STA 314 Tutorial 4

David Veitch

University of Toronto
daveveitch.github.io

October 4, 2019

Agenda

(1) Cool Paper
(2) Prediction v Inference
(3) Kahoot
(4) ISLR 3.7 Exercise 5
(5) ISLR 3.7 Exercise 7

Cool Paper

Abstract We describe the Customer LifeTime Value (CLTV) prediction system deployed at ASOS.com, a global online fashion retailer. CLTV prediction is an important problem in e-commerce where an accurate estimate of future value allows retailers to effectively allocate marketing spend, identify and nurture high value customers and mitigate exposure to losses. https://arxiv.org/pdf/1703.02596.pdf

Performance With NN-Generated + Regular Features for Logistic Regression

Prediction v Inference

Prediction	Inference

Which is more important?

Prediction v Inference

Prediction	Inference
What is the weather tomorrow?	What is the weather in 100 years?

Which question is more important?

Kahoot

Kahoot!

ISLR 3.7 Exercise 5

Consider the fitted values that result from performing linear regression without an intercept. In this setting the $i^{t} h$ fitted value takes the form

$$
\hat{y}_{i}=x_{i} \hat{\beta}
$$

where

$$
\hat{\beta}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i^{\prime}=1}^{n} x_{i^{\prime}}^{2}}
$$

Show that we can write

$$
\hat{y}_{i}=\sum_{i^{\prime}=1}^{n} a_{i^{\prime}} y_{i^{\prime}}
$$

And show what does $a_{i^{\prime}}$ equal

ISLR 3.7 Exercise 5

We are given that for a no intercept model, $i^{\text {th }}$ fitted value

$$
\hat{y}_{i}=x_{i} \hat{\beta}
$$

where

$$
\hat{\beta}=\frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right)}{\left(\sum_{i^{\prime}=1}^{n} x_{i^{\prime}}^{2}\right)}
$$

we can re-write this as

$$
\hat{\beta}=\frac{\left(\sum_{i^{\prime}=1}^{n} x_{i^{\prime}} y_{i^{\prime}}\right)}{\left(\sum_{j=1}^{n} x_{j}^{2}\right)}
$$

ISLR 3.7 Exercise 5

Then

$$
\begin{aligned}
& \hat{y}_{i}=x_{i} \frac{\left(\sum_{i^{\prime}=1}^{n} x_{i^{\prime}} y_{i^{\prime}}\right)}{\left(\sum_{j=1}^{n} x_{j}^{2}\right)}=\sum_{i^{\prime}=1}^{n}\left(\frac{x_{i} x_{i^{\prime}}}{\left(\sum_{j=1}^{n} x_{j}^{2}\right)}\right) y_{i^{\prime}} \\
& \hat{y}_{i}=\sum_{i^{\prime}=1}^{n} a_{i^{\prime}} y_{i^{\prime}} \\
& a_{i^{\prime}}=\frac{x_{i} x_{i^{\prime}}}{\left(\sum_{j=1}^{n} x_{j}^{2}\right)}
\end{aligned}
$$

Note: We interpret this result by saying that the fitted values from linear regression are linear combinations of the response values.
Question: If for a given \hat{y}_{i}, we have x_{i} relatively very large what happens?

ISLR 3.7 Exercise 7

It is claimed in the text that in the case of simple linear regression of Y onto X, the R^{2} statistic (3.17) is equal to the square of the correlation between X and Y (3.18). Prove that this is the case. For simplicity, you may assume that $\bar{x}=\bar{y}=0$.

ISLR 3.7 Exercise 7

First we know that since $\bar{y}=0$ that

$$
R^{2}=1-\frac{R S S}{T S S}=1-\frac{\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i}\left(\left(y_{i}-\bar{y}\right)^{2}\right)}=1-\frac{\sum_{i}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}}{\sum_{i} y_{i}^{2}}
$$

Also we know that since $\bar{x}=\bar{y}=0$ then

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}=0
$$

This implies that

$$
R^{2}=1-\frac{\sum_{i}\left(y_{i}-\hat{\beta}_{1} x_{i}\right)^{2}}{\sum_{i} y_{i}^{2}}
$$

ISLR 3.7 Exercise 7

Also,

$$
\left(y_{i}-\hat{\beta}_{1} x_{i}\right)^{2}=y_{i}^{2}-2 x_{i} y_{i} \hat{\beta}_{1}-\hat{\beta}_{1}^{2} x_{i}^{2}
$$

Taking sum over both sides gets us

$$
\sum_{i}\left(y_{i}-\hat{\beta}_{1} x_{i}\right)^{2}=\sum_{i} y_{i}^{2}-2 \hat{\beta}_{1} \sum_{i} x_{i} y_{i}+\hat{\beta}_{1}^{2} \sum_{i} x_{i}^{2}
$$

We know since $\bar{x}=\bar{y}=0$ that

$$
\hat{\beta}_{1}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-x\right)^{2}}=\frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}
$$

ISLR 3.7 Exercise 7

Then substituting this into the previous equation

$$
\begin{aligned}
\sum_{i}\left(y_{i}-\hat{\beta}_{1} x_{i}\right)^{2} & =\sum_{i} y_{i}^{2}-2\left(\frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}\right) \sum_{i} x_{i} y_{i}+\left(\frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}\right)^{2} \sum_{i} x_{i}^{2} \\
& =\sum_{i} y_{i}^{2}-\frac{\left(\sum_{i} x_{i} y_{i}\right)^{2}}{\sum_{i} x_{i}^{2}}
\end{aligned}
$$

Bringing this back to the equation for R^{2} we get
$R^{2}=1-\frac{\sum_{i}\left(y_{i}-\hat{\beta}_{1} x_{i}\right)^{2}}{\sum_{i} y_{i}^{2}}=\frac{\sum_{i} y_{i}^{2}-\sum_{i} y_{i}^{2}+\frac{\left(\sum_{i} x_{i} y_{i}\right)^{2}}{\sum_{i} x_{i}^{2}}}{\sum_{i} y_{i}^{2}}=\frac{\left(\sum_{i} x_{i} y_{i}\right)^{2}}{\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}}$

ISLR 3.7 Exercise 7

Finally! We compare this last equation to the correlation equation.
From previous page

$$
R^{2}=\frac{\left(\sum_{i} x_{i} y_{i}\right)^{2}}{\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}}
$$

The formula for correlation (and set $\bar{x}=\bar{y}=0$)

$$
\begin{aligned}
\operatorname{Cor}(X, Y) & =\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i}\left(x_{i}-x\right)^{2}} \sqrt{\sum_{i}\left(y_{i}-y\right)^{2}}}=\frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}}} \\
\operatorname{Cor}(X, Y)^{2} & =\left(\frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}}}\right)^{2}=\frac{\left(\sum_{i} x_{i} y_{i}\right)^{2}}{\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}}=R^{2}
\end{aligned}
$$

Beware R^{2}

Linear Regression When a Non-Linear Relationship is Present R-Squared= 0.00039

