STA 255 Tutorial 6

David Veitch
University of Toronto
daveveitch.github.io

July 30, 2019

Agenda

(1) Kahoot

(2) Change of Variables (pg 221 Devore \& Berk)
(3) Chg of Variables Example

4 Joint Probability Example (Exercise 5.1.1 Devore \& Berk)

Kahoot

Kahoot!

Change of Variables (pg 221 Devore \& Berk)

Where $y=g(x)$ and $x=h(y)=g^{-1}(y)$

$$
\begin{aligned}
F_{Y}(y)=P(Y \leq y)= & P[g(X) \leq y]=P[X \leq h(y)]=F_{x}[h(y)] \\
& F_{Y}(y)=F_{x}[h(y)]
\end{aligned}
$$

Now differentiate both sides!

Change of Variables (pg 221 Devore \& Berk)

Where $y=g(x)$ and $x=h(y)=g^{-1}(y)$

$$
\begin{aligned}
F_{Y}(y)=P(Y \leq y)= & P[g(X) \leq y]=P[X \leq h(y)]=F_{X}[h(y)] \\
& F_{Y}(y)=F_{x}[h(y)]
\end{aligned}
$$

Now differentiate both sides!

$$
\begin{aligned}
\frac{d}{d y} F_{Y}(y) & =\frac{d}{d y} F_{x}[h(y)] \\
f_{Y}(y) & =\left[\frac{d}{d x} F_{X}(x)\right]\left|\frac{d}{d y} h(y)\right| \\
f_{Y}(y) & =f_{X}(x)\left|h^{\prime}(y)\right| \\
f_{Y}(y) & =f_{X}[h(y)]\left|h^{\prime}(y)\right|
\end{aligned}
$$

Chg of Variables Example

Let X be a random variable, where $0 \leq x \leq 1$ with pdf $f_{X}(x)=2 x$. Let $Y=3 x+3$. What is the pdf of Y ? Draw it and compare it to X 's pdf.

Chg of Variables Example

Let X be a random variable, where $0 \leq x \leq 1$ with pdf $f_{X}(x)=2 x$. Let $Y=3 x+3$. What is the pdf of Y ? Draw it and compare it to X 's pdf.

Joint Probability Example (Exercise 5.1.1 Devore \& Berk)

A service station has both self-service and full service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint pmf of X and Y appears in the accompanying tabulation.

$p(x, y)$		0	y	
	0	. 10	. 04	. 02
x	1	. 08	. 20	. 06
	2	. 06	. 14	. 30

(1) Find $P(X=1 \cap Y=1), P(X \leq 1 \cap Y \leq 1), P(X \neq 0 \cap Y \neq 0)$
(2) Compute the marginal pmf of X and Y

