STA 255 Tutorial 8

David Veitch

University of Toronto
daveveitch.github.io

August 6, 2019

Agenda

(1) Kahoot
(2) Estimators (Exercise 7.11 Devore \& Berk)
(3) Estimators (Exercise 7.23 Devore \& Berk)

Kahoot

Kahoot!

Estimators (Exercise 7.11 Devore \& Berk)

Of n_{1} randomly selected male smokers, X_{1} smoked filter cigarettes, whereas of n_{2} randomly selected female smokers, X_{2} smoked filter cigarettes. Let p_{1} and p_{2} denote the probabilities that a randomly selected male and female, respectively, smoke filter cigarettes.
(1) Show that $X_{1} / n_{1}-X_{2} / n_{2}$ is an unbiased estimator for $p_{1}-p_{2}$
(2) What is the standard error of the estimator in part 1
(3) How would you use the observed values x_{1} and x_{2} to estimate the standard error of your estimator
(9) If $n_{1}=n_{2}=200, x_{1}=127, x_{2}=176$ use the estimator of part 1 to obtain an estimate of $p_{1}-p_{2}$
(6) Use the result of part 3 and part 4 to estimate the standard error of the estimator

Estimators (Exercise 7.11 Devore \& Berk)

1.

$$
\begin{aligned}
E\left[X_{1} / n_{1}-X_{2} / n_{2}\right] & =E\left[X_{1} / n_{1}\right]-E\left[X_{2} / n_{2}\right] \\
& =\frac{1}{n_{1}} E\left[X_{1}\right]-\frac{1}{n_{2}} E\left[X_{2}\right] \\
& =p_{1}-p_{2}
\end{aligned}
$$

2. Using the fact that X_{1} and X_{2} are independent, and the formula for the variance of a binomial distribution, we get:

$$
\begin{aligned}
\operatorname{Var}\left(X_{1} / n_{1}-X_{2} / n_{2}\right) & =\operatorname{Var}\left(X_{1} / n_{1}\right)+\operatorname{Var}\left(X_{2} / n_{2}\right) \\
& =\frac{1}{n_{1}^{2}} \operatorname{Var}\left(X_{1}\right)+\frac{1}{n_{2}^{2}} \operatorname{Var}\left(X_{2}\right) \\
& =\frac{n_{1} p_{1}\left(1-p_{1}\right)}{n_{1}^{2}}+\frac{n_{2} p_{2}\left(1-p_{2}\right)}{n_{2}^{2}}=\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}
\end{aligned}
$$

Estimators (Exercise 7.11 Devore \& Berk)

3. Set $\hat{p}_{1}=x_{1} / n_{1}, \hat{p}_{2}=x_{2} / n_{2}$
4. $\hat{p}_{1}-\hat{p}_{2}=-.245$
5. Plugging in \hat{p}_{1} and \hat{p}_{2} we get the standard error to be 0.041

Estimators (Exercise 7.23 Devore \& Berk)

Let X denote the proportion of alloted time that a randomly selected student spends working on a certain aptitutde test. Suppose the pdf of X, where $-1<\theta$, is:

$$
f(x ; \theta)= \begin{cases}(\theta+1) x^{\theta} & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

A random sample of 10 students yields data: .92, .79, .90, .65, .86, .47, .73, .97, . 94, . 77 .
(1) Use the method of moments to obtain an estimator of θ, and then compute the estimate for this data.
(2) Obtain the maximum likelihood estimator of θ, and then compute the estimate for the given data.

Estimators (Exercise 7.23 Devore \& Berk)

1.

$$
\begin{gathered}
E[X]=\int_{0}^{1} x(\theta+1) x^{\theta} d x=1-\frac{1}{\theta+2} \\
\Rightarrow \hat{\theta}=\frac{1}{1-\bar{X}}-2=\frac{1}{1-.8}-2=3
\end{gathered}
$$

2.

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n} ; \theta\right) & =(\theta+1)^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta} \\
\ln \left(f\left(x_{1}, \ldots, x_{n} ; \theta\right)\right) & =n \ln (\theta+1)+\theta \sum_{i=1}^{n} \ln \left(x_{i}\right) \\
\frac{\partial}{\partial \theta} \ln \left(f\left(x_{1}, \ldots, x_{n} ; \theta\right)\right) & =\frac{n}{\theta+1}+\sum_{i=1}^{n} \ln \left(x_{i}\right)=0 \\
\Rightarrow \hat{\theta} & =-1-\frac{n}{\sum_{i=1}^{n} \ln \left(x_{i}\right)}
\end{aligned}
$$

