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Partially based on the lecture notes of (Kemp 2016) [2]

1 Motivation - Image Denoising

- one example in (Basu et al. 2010) [1]

- take a picture, and something is corrupting it (e.g. blur)

- would like to remove blur

- let X be a sqaure matrix with entries representing the color of the pixel

- make assumption noise is Gaussian

- look at local neighbourhoods in the image, assume pixels are random (i.e. noise)

- know distribution of eigenvalues of random matrix (Wigner), any eigenvalues outside of this are ‘non-
random’

Figure 1: Source: https://math.uni.lu/eml/projects/reports/random-matrices.pdf

1.1 Other Applications

- study of “wave functions of quantum mechanical systems which are assumed to be so complicated that
statistical considerations can be applied to them” (Wigner 1955) [4]

- like the CLT for free probability (studying situations where random variables XY = Y X not necessarily
true)
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2 Important Definitions and Results

Definition 2.1 (Wigner matrix) Yn a matrix with entries {Yij}1≤i,j≤n, where Yij = Yji. {Yij}1≤i,j≤n
independent random variables where Yii

iid∼ F1 and Yij
iid∼ F2. 0 < E[Y 2

ij ] <∞. Then

Xn =
1√
n

Yn (1)

is a Wigner matrix

Recall: since Xn real and symmetric ⇒ Xn has n real eigenvalues.

Definition 2.2 (Empirical Law of Eigenvalues) Xn a Wigner matrix, its empirical law of eigenval-
ues µXn

is the random discrete probability measure

µXn
=

1

n

n∑
j=1

δλj(Xn) (2)

Definition 2.3 (Wigner’s semicircle distribution) The following probability density function is the
Wigner semicircle distribution

σt(x) =

{
1

2πt

√
(4t− x2) x ∈ [−2t, 2t]

0 otherwise
. (3)

Theorem 2.4 (Wigner’s Semicircle Law) Xn be a sequence of Wigner matrices with E[Yij ] = 0 and
E[Y 2

ij ] = t. Then for any f : R→ R that is continuous and bounded, and for each ε > 0

lim
n→∞

P

(∣∣∣∣∫ f dµXn −
∫
f dσt

∣∣∣∣ > ε

)
= 0. (4)

Note: where Xn = UTn ΛnUn, using cyclic property of trace, we could rewrite
∫
f dµXn as∫

f dµXn =
1

n

n∑
j=1

f (λj(Xn)) =
1

n

n∑
j=1

f([Λn]jj) =
1

n
Tr (f(Λn)) =

1

n
Tr(UTn f(Λn)U) =

1

n
Tr (f(Xn))

(5)

Note: essentially means in limit the empirical law of eigenvalues ≈Wigner semi-circle distribution since
can approximate indicator function with continuous bounded f

Figure 2: Histogram of eigenvalues for a 2000x2000 simulated Wigner matrix with standard normal
entries.

Note: Theorem 2.4 does not really depend on the second moments of diagonals (other than them being
finite)
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Theorem 2.5 (Wigner’s Law for Matrix Moments) Xn a sequence of Wigner matrices with E[Yij ] =
0 and E[Y 2

ij ] = t ∀ i 6= j. Then for fixed k ∈ N

lim
n→∞

P

(∣∣∣∣ 1nTr(Xk
n)−

∫
xk σt(x)

∣∣∣∣ > ε

)
= 0. (6)

Note: Theorem 2.5 is what we will prove, inuitively going to Theorem 2.4 just a matter of approximating
f with polynomials.

Fact 2.6
∫
xkσt(x) = tk/2

∫
xkσ1(x) ( t second moment of off-diagonal).

Fact 2.7 Let mk =
∫
xkσ1(x), by symmetry m2k+1 = 0 ∀ k, m0 = 1.

Fact 2.8 m2k = 2(2k−1)
k+1 m2(k−1) = Ck = 1

k+1

(
2k
k

)
where Ck a Catalan number.

Fact 2.9 Ck is the number of paths from the bottom left to the upper right of a k × k grid which do not
pass above the diagonal [3].

Figure 3: Source: Wikipedia

3 Proof Sketch of Equation 7

To prove Theorem 2.5 we need to show the following

lim
n→∞

E

[
Tr

(
1

n
Xk
n

)]
=

{
tk/2Ck/2 k even

0 k odd
(7)

lim
n→∞

Var

[
Tr

(
1

n
Xk
n

)]
= 0 (8)

1. Think of matrix multiplication in terms of walks on graphs

2. Show that asymptotically only specific terms enter into the matrix multiplication, and we can take
expected values to get the trace

3.1 Expected Value

First note that

E

[
Tr

(
1

n
Xk
n

)]
=

1

n
E

[
Tr

((
1√
n

Yn

)k)]
=

1

nk/2+1
E
[
Tr
(
Yk
n

)]
(9)

Some Notation

• [n] = {1, . . . , n}

• i = (i1, . . . , ik)
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• Yi = Yi1i2Yi2i3 · · ·Yiki1

Definition 3.1 (Gi, Vi, Ei, wi) for i ∈ [n]k a k-index i = (i1, . . . , ik) let the graph Gi have verticies Vi
which are distinct elements of i and let it have edges Ei which are distinct pairs among

{{i1, i2}, {i2, i3}, . . . , {ik−1, ik}, {ik, i1}}.

Then let the path wi be the sequence of edges

wi = ({i1, i2}, {i2, i3}, . . . , {ik−1, ik}, {ik, i1}}. (10)

1=i1 4=i2 = i3

6=i4 2=i5

1

2

1

1

1

Figure 4: Example of Gi when i = {1, 4, 4, 4, 6, 2}

Fact 3.2 (Repeated Matrix Multiplication) For any 1 ≤ i, j ≤ n

[Yk
n]ij =

∑
1≤i2,...,ik≤n

Yii2Yi2i3 · · ·Yik−1ikYikj (11)

More notation

1. wi(e) is the number of times each edge is traversed, in Figure 4 wi({4, 4}) = 2, and for all other
edges equals 1.

2. Esi the set of self edges Esi = {{i, i} ∈ Ei}

3. Eci the set of connecting edges Eci = {{i, j} ∈ Ei, i 6= j}

4. Gk the set of all pairs (G,w) where G a connected graph with at most k vertices, w the closed walk
on G with length k (note that Gk not defined with respect to specific verticies, i.e. it is independent
of n)

All of this notation allows us to write the expected trace in the following way

E
[
Tr
(
Yk
n

)]
=

n∑
i1=1

E
[
[Yk

n]i1i1
]

(12)

=
∑

1≤i1,i2,...,ik≤n

E[Yi1i2Yi2i3 · · ·Yiki1 ] (13)

=
∑

i∈[n]k
E[Yi] (14)

=
∑

i∈[n]k

∏
1≤i≤j≤n

E
[
Y
wi({i,j})
ij

]
(15)

=
∑

i∈[n]k

 ∏
es∈Es

i

E
[
Y
wi(es)
11

] ∏
ec∈Ec

i

E
[
Y
wi(ec)
12

] (16)
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So essentially trace determined by the values of E[Yi].

Now since the Yii, Yij have fixed distributions, many of the E[Yi] are same value which we denote as
Π(G,w)

E
[
Tr
(
Yk
n

)]
=

∑
(G,w)∈Gk

∑
i∈[n]k

(Gi,wi)=(G,w)

E [Yi] (17)

=
∑

(G,w)∈Gk

Π(G,w)
∣∣{i ∈ [n]k | (Gi, wi) = (G,w)}

∣∣ (18)

where in Equation 18 | · | represents the cardinality of the set.

Returning back to a normalized version of Yk
n, which is E

[
Tr
(
1
nXk

n

)]
= 1

nk/2+1 E
[
Tr
(
Yk
n

)]
we get

1

n
E
[
Tr
(
Xk
n

)]
=

∑
(G,w)∈Gk

Π(G,w)

∣∣{i ∈ [n]k | (Gi, wi) = (G,w)}
∣∣

nk/2+1
(19)

Lemma 3.3 (Cardinality of k-indexes) Given (G,w) ∈ Gk, with |G| the number of verticies in G
then ∣∣{i ∈ [n]k | (Gi, wi) = (G,w)}

∣∣ = n(n− 1) · · · (n− |G|+ 1) (20)

Remember E[Yij ] = 0, therefore only consider w where each edge has been crossed at least twice (denoted
w ≥ 2), so we get

1

n
E
[
Tr
(
Xk
n

)]
=

∑
(G,w)∈Gk
w≥2

Π(G,w)
n(n− 1) · · · (n− |G|+ 1)

nk/2+1
. (21)

Each edge is crossed at least twice, |w| = k ⇒ number of edges used is ≤ k/2 ⇒ |G| ≤ k/2 + 1. And
n(n− 1) · · · (n− |G|+ 1) = On|G| ⇒ sequence will be bounded.

Also |G| must be n integer so for an odd k we have |G| ≤ k/2 + 1/2. Therefore each term on the RHS
of Equation 21 is O(n−1/2) and Gk independent of n therefore

lim
n→∞

1

n
E
[
Tr
(
Xk
n

)]
→ 0. (22)

Fact 3.4 ((G,w) ∈ Gk with w ≥ 2)

1. If there is a self edge in G then |G| ≤ k/2

2. If there is an edge in G with w(e) ≥ 3 then |G| ≤ k/2

This fact means those two cases are asympotically 0! Therefore only care about Gk/2+1
k where G has

k/2 + 1 vertices, no self-edges, and walk crosses each edge exactly 2 times. This gives us

1

n
E
[
Tr
(
Xk
n

)]
=

 ∑
(G,w)∈Gk/2+1

k

Π(G,w)
n(n− 1) · · · (n− |G|+ 1)

nk/2+1

+Ok(n−1) (23)

lim
n→∞

1

n
E
[
Tr
(
Xk
n

)]
=

∑
(G,w)∈Gk/2+1

k

Π(G,w) (24)

=
∑

(G,w)∈Gk/2+1
k

( ∏
ec∈Ec

E[Y 2
12]

)
(25)

= tk/2
∣∣∣Gk/2+1
k

∣∣∣ (26)
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Can be shown that
∣∣∣Gk/2+1
k

∣∣∣ = Ck/2 where Ck/2 a Catalan number.

So we have shown that the expected value of the trace converges to tk/2Ck/2 which is the k-th moment of
the Wigner semicircle distribution. Now we need to prove the variance converges to 0 to get convergence
in probability.

3.2 Variance

The variance can be rearranged as

Var

[
1

n
Tr(Xk

n)

]
=

1

nk+2

∑
i,j∈[n]k

(E[YiYj]− E[Yi]E[Yj]) (27)

where the terms in the sum can be viewed as two separate walks on two separate graphs.

Similar to the case of the expectation, we attempt to narrow down the terms of the sum that are non-zero.
Denoting w + w′ ≥ 2 where each edge is traversed at least twice, and π(G,w,w′) as the expected value
of this graph and its walks, and M2k as a bound on the maximum expected value over all π(G,w,w′)
(note that there are only finitely many ways to rearrange 2k arbitrary vertices so M2k is finite. This
gives the bound

Var

[
1

n
Tr(Xk

n)

]
≤

∑
(G,w,w′)∈Gk,k

w+w′≥2

π(G,w,w′)
nk+1

nk+2
≤ 2M2k

n
|Gk,k| (28)

Now since M2k, |Gk,k| are independent of n, the bound in Equation 28 is Ok(n−1), therefore the variance
will converge to 0 as n goes to infinity, proving convergence in probability.
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