Nonparametric Regression for Locally Stationary Time Series [Vogt, 2012]

David Veitch
University of Toronto
March 312022

(1) Motivation
(2) Local Stationarity Definition
(3) Locally Stationary Nonlinear AR Models
(4) Theorem 3.2 Outline
(5) Kernel Estimation
(6) Locally Stationary Additive Models
(7) Extensions
(8) References

Theory of locally stationary processes one way to model nonstationarity. [Dahlhaus, 1996] considered time varying spectral representations.

$$
\begin{equation*}
X_{t, T}=\mu\left(\frac{t}{T}\right)+\int_{-\pi}^{\pi} \exp (i \lambda t) A_{t, T}^{0}(\lambda) d \xi(\lambda) \tag{1}
\end{equation*}
$$

Others considered it within a parametric context (i.e. coefficients change smoothly over time). [Dahlhaus and Rao, 2006] studied ARCH models with time-varying coefficients.

$$
\begin{align*}
& X_{t, N}=\sigma_{t, N} Z_{t}, \quad Z_{t} \sim \text { i.i.d } \tag{2}\\
& \sigma_{t, N}^{2}=a_{0}\left(\frac{t}{N}\right)+\sum_{j=1}^{\infty} a_{j}\left(\frac{t}{N}\right) X_{t-j, N}^{2} \tag{3}
\end{align*}
$$

This paper introduces nonparametric framework as natural extension to models with time-varying coefficients.

General Idea

$$
\begin{equation*}
Y_{t, T}=m\left(\frac{t}{T}, X_{t, T}\right)+\epsilon_{t, T} \quad t=1, \ldots, T \tag{4}
\end{equation*}
$$

with

$$
\begin{aligned}
\mathbb{E}\left[\epsilon_{t, T} \mid X_{t, T}\right] & =0 \\
Y_{t, T} & \in \mathbb{R} \\
X_{t, T} & \in \mathbb{R}^{d} .
\end{aligned}
$$

Y, X, ϵ assumed to be locally stationary, and m is a function which is allowed to change smoothly over time.

General Idea - Example

Figure: Estimate m by assuming small segments of $Y_{t, T}$ (LHS) strictly stationary (RHS \approx strictly stationary).

Defining Local Stationarity

Intuition: Locally around each rescaled time point u, the process $X_{t, T}$ can be approximated by a stationary process.

Definition 2.1

The process $\left\{X_{t, T}\right\}$ is locally stationary if for each rescaled time point $u \in[0,1]$ there exists an associated process $\left\{X_{t}(u)\right\}$ with the following two properties
(1) $\left\{X_{t}(u)\right\}$ is strictly stationary with density $f_{X_{t}(u)}$
(2) $\left\|X_{t, T}-X_{t}(u)\right\| \leq\left(\left|\frac{t}{T}-u\right|+\frac{1}{T}\right) U_{t, T}(u)$ a.s.
where $\left\{U_{t, T}(u)\right\}$ a process of positive variables with $\mathbb{E}\left[U_{t, T}(u)^{\rho}\right]<C$ for some $\rho>0, C<\infty$ independent of u, t, T. \|•\| an arbitrary norm on \mathbb{R}^{d}.

Since ρ-th moments of $U_{t, T}(u)$ uniformly bounded, $U_{t, T}(u)=O_{p}(1)$ therefore as a result of Definition 2.1

$$
\begin{equation*}
\left\|X_{t, T}-X_{t}(u)\right\|=O_{p}\left(\left|\frac{t}{T}-u\right|+\frac{1}{T}\right) \tag{5}
\end{equation*}
$$

Author looks at three different classes of locally stationary models:
(1) Locally stationary nonlinear AR models
(2) Kernel estimation
(0) Locally stationary additive models

Locally Stationary Nonlinear AR Models

$\left\{Y_{t, T} \mid t \in \mathbb{Z}\right\}_{T=1}^{\infty}$ is a time-varying nonlinear autoregressive process (tvNAR) if $Y_{t, T}$ evolves according to

$$
\begin{equation*}
Y_{t, T}=m\left(\frac{t}{T}, Y_{t-1, T}^{t-d}\right)+\sigma\left(\frac{t}{T}, Y_{t-1, T}^{t-d}\right) \epsilon_{t} \tag{6}
\end{equation*}
$$

- $m(u, y), \sigma(u, y)$ smooth functions of rescaled time u
- $u \leq 0 \Rightarrow m(u, y)=m(0, y)$ and $\sigma(u, y)=\sigma(0, y)$. Similarly for $u \geq 1 \Rightarrow m(u, y)=m(1, y)$ and $\sigma(u, y)=\sigma(1, y)$.
- ϵ_{t} are iid mean zero

Then for all $u \in \mathbb{R}$ the associated process $\left\{Y_{t}(u) \mid t \in \mathbb{Z}\right\}$ is

$$
\begin{equation*}
Y_{t}(u)=m\left(u, Y_{t-1}^{t-d}(u)\right)+\sigma\left(u, Y_{t-1}^{t-d}(u)\right) \epsilon_{t} \tag{7}
\end{equation*}
$$

Some conditions sufficient to ensure tvNAR process locally statinoary and strongly mixing

- (M1) m absolutely bounded by constant $C_{m}<\infty$
- (M2) m Lipschitz continuous $\left|m(u, y)-m\left(u^{\prime}, y\right)\right| \leq L\left|u-u^{\prime}\right| \forall y \in \mathbb{R}^{d}$ for some $L<\infty$
- (M3) m continuously differentiable with respect to y, and $\partial_{j} m(u, y)=\frac{\partial}{\partial y_{j}} m(u, y)$ have for some $K_{1}<\infty$ $\sup _{u \in \mathbb{R},\|y\|_{\infty}>K_{1}}\left|\partial_{j} m(u, y)\right| \leq \delta<1$

- ($\Sigma 1) \sigma$ bounded by finite constant $C_{\sigma}<\infty$ from above and c_{σ} from below for all u, y
- ($\Sigma 2$) σ Lipschitz continuous with respect to u
- ($\Sigma 3) \sigma$ continuously differentiable with respect to y, and for $\partial_{j} \sigma(u, y)$ we have for $K_{1}<\infty$ we have $\sup _{u \in \mathbb{R},\|y\|_{\infty}>K_{1}}\left|\partial_{j} \sigma(u, y)\right| \leq \delta<1$
- (E1) ϵ_{t} iid, centred $\mathbb{E}\left[\left|\epsilon_{t}\right|^{1+\eta}\right]<\infty$ for some positive $\eta . \epsilon$ has everywhere positive continuous density f_{ϵ}.
- (E2) f_{ϵ} bounded and Lipschitz $\exists L<\infty$ such that $f_{\epsilon}(z)-f_{\epsilon}\left(z^{\prime}\right)|\leq L| z-z^{\prime} \mid \forall z, z^{\prime} \in \mathbb{R}$
- (E3) d_{0}, d_{1} constants $0 \leq d_{0} \leq D_{0}<\infty, \mid d_{1} \leq D_{1}<\infty$. f_{ϵ} satisfies

$$
\begin{equation*}
\int_{\mathbb{R}}\left|f_{\epsilon}\left(\left[1+d_{0}\right] z+d_{1}\right)-f_{\epsilon}(z)\right| d z \leq C_{D_{0}, D_{1}}\left(d_{0}+\left|d_{1}\right|\right) \tag{8}
\end{equation*}
$$

where $C_{D_{0}, D_{1}}<\infty$ only depend on bounds D_{0}, D_{1}

Under assumptions listed we get
(1) tvNAR locally stationary
(2) tvNAR strongly mixing
(3) Auxiliary process $\left\{Y_{t}(u)\right\}$ has densities that vary smoothly with u

Theorem 3.1

Let assumptions (M1)-(M3), ($\Sigma 1$)-($\Sigma 3$), (E1) be fulfilled. Then
(1) for each $u \in \mathbb{R}$ the process $\left\{Y_{t}(u), t \in \mathbb{Z}\right\}$ has a strictly stationary solution with ϵ_{t} independent of $Y_{t-k}(u)$ for $k>0$
(2) the variables $Y_{t-1}^{t-d}(u)$ have density $f_{Y_{t-1}^{t-d}(u)}$ with respect to Lebesgue measure
(3) the variables $Y_{t-1, T}^{t-d}(u)$ have density $f_{Y_{t-1}, T^{t-d}(u)}$ with respect to Lebesgue measure

tvNAR Properties

Theorem 3.2

Let assumptions (M1)-(M3), ($\Sigma 1$)-($\Sigma 3$), (E 1) be fulfilled. Then

$$
\left|Y_{t, T}-Y_{t}(u)\right| \leq\left(\left|\frac{t}{T}-u\right|+\frac{1}{T}\right) U_{t, T}(u) \quad \text { a.s. }
$$

where variables $U_{t, T}(u)$ have property that $\mathbb{E}\left[\left(U_{t, T}(u)\right)^{\rho}\right]<C$ for some $\rho>0$ and $C<\infty$ independent of u, t, T.

Figure: The difference between $Y_{t, T}$ (black) relative to $Y_{t}(u)$ increases as u moves away from 0.5 (blue).

Theorem $3.1+$ Theorem $3.2 \Rightarrow$ tvNAR process $\left\{Y_{t, T}\right\}$ is locally stationary (Definition 2.1).

Theorem 3.3

Let $f(u, y)=f_{Y_{t-1}^{t-d}(u)}$ be the density of $Y_{t-1}^{t-d}(u)$ at $y \in \mathbb{R}^{d}$. If (M1)-(M3),($\Sigma 1$)-($\Sigma 3$), (E1), (E2) fulfilled then

$$
|f(u, y)-f(v, y)| \leq C_{y}|u-v|^{p}
$$

with some constant $0<p<1$ and $C_{y}<\infty$ continuously depending on y.

We will characterize the mixing behaviour of the tvNAR process.

$$
\text { Recall: Events } \begin{aligned}
A, B \text { Independent } & \Longleftrightarrow P(A \cap B)=P(A) P(B) \\
& \Longleftrightarrow P(A \mid B)=P(A)
\end{aligned}
$$

Definition - α, β mixing array.

Let (Σ, \mathcal{A}, P) be a probability space, and \mathcal{B}, \mathcal{C} subfields of \mathcal{A}. Then

$$
\begin{aligned}
& \alpha(\mathcal{B}, \mathcal{C})=\sup _{B \in \mathcal{B}, C \in \mathcal{C}}|P(B \cap C)-P(B) P(C)| \\
& \beta(\mathcal{B}, \mathcal{C})=\mathbb{E}\left[\sup _{C \in \mathcal{C}}|P(C)-P(C \mid \mathcal{B})|\right]
\end{aligned}
$$

$\alpha(k), \beta(k)$

For an array $\left\{Z_{t, T} \mid 1 \leq t \leq T\right\}$

$$
\begin{aligned}
& \alpha(k)=\sup _{t, T 1 \leq t \leq T-k} \alpha\left(\sigma\left(Z_{s, T}, 1 \leq s \leq t\right), \sigma\left(Z_{s, T}, t+k \leq s \leq T\right)\right. \\
& \beta(k)=\sup _{t, T 1 \leq t \leq T-k} \alpha\left(\sigma\left(Z_{s, T}, 1 \leq s \leq t\right), \sigma\left(Z_{s, T}, t+k \leq s \leq T\right)\right.
\end{aligned}
$$

The array $\left\{Z_{t, T}\right\}$ is α mixing (strongly mixing) if $\alpha(k) \rightarrow 0$ as $k \rightarrow \infty$. Similarly β mixing if $\beta(k) \rightarrow 0$ as $k \rightarrow \infty$.

Theorem 3.4

If (M1)-(M3), ($\Sigma 1$)-($(\Sigma 3)$, (E1)-(E3) fulfilled then the tvNAR process $\left\{Y_{t, T}\right\}$ is geometrically β mixing, that is, there exist positive constants $\gamma<1, C<\infty$ such that $\beta(k) \leq C \gamma^{k}$.

Figure: As k increases the values that Z_{1}, \ldots, Z_{t} take effect the values Z_{t+k}, \ldots, Z_{T} take less and less.
(1) Preliminaries
(2) Triangle Inequality

- Backward Iteration
- Triangle Inequality Bound
- Bounding Norm of Matrix Product

Different types of Y

$$
\begin{aligned}
Y_{t, T} & =m\left(\frac{t}{T}, Y_{t-1, T}^{t-d}\right)+\sigma\left(\frac{t}{T}, Y_{t-1, T}^{t-d}\right) \epsilon_{t} \quad \text { Locally Stationary } \\
Y_{t}(u) & =m\left(u, Y_{t-1, T}^{t-d}(u)\right)+\sigma\left(u, Y_{t-1, T}^{t-d}(u)\right) \epsilon_{t} \quad \text { Strictly Stationary } \\
\underline{Y}_{t, T} & =Y_{t, T}^{t-d+1}=\left(Y_{t-d+1, T}, Y_{t-d+2, T}, \ldots, Y_{t-1, T}, Y_{t, T}\right) \\
\underline{Y}_{t, T}(u) & =Y_{t, T}^{t-d+1}(u)=\left(Y_{t-d+1, T}(u), Y_{t-d+2, T}(u), \ldots, Y_{t-1, T}(u), Y_{t, T}(u)\right)
\end{aligned}
$$

Linearization Δ Terms

By mean value theorem and Taylor's theorem

$$
\begin{aligned}
m\left(v, \underline{Y}_{t-1}(v)\right)-m\left(u, \underline{Y}_{t-1}(u)\right) & =\Delta_{t, 0}^{m}+\sum_{j=1}^{d} \Delta_{t, j}^{m}\left(Y_{t-j}(v)-Y_{t-j}(u)\right) \\
\Delta_{t, 0}^{m} & =m\left(v, \underline{Y}_{t-1}(v)\right)-m\left(u, \underline{Y}_{t-1}(v)\right) \\
\Delta_{t, j}^{m} & =\Delta_{j}^{m}\left(u, \underline{Y}_{t-1}(u), \underline{Y}_{t-1}(v)\right) \\
\Delta_{j}^{m}\left(u, y, y^{\prime}\right) & =\int_{0}^{1} \partial_{j} m\left(u, y+s\left(y^{\prime}-y\right)\right) d s
\end{aligned}
$$

Matrix Notation

- || $\cdot \|$ Euclidean norm for vectors
- Spectral norm for $d \times d$ matrices $\|A\|_{2}=\max _{||x|=1}|A x|=$ square root of max eigenvalue $A^{T} A$
- Matrices of these forms are used

$$
B(z)=\left[\begin{array}{cccc}
z & \cdots & z & z \tag{9}\\
1 & & 0 & 0 \\
& \ddots & & \vdots \\
0 & & 1 & 0
\end{array}\right]
$$

$$
\left|Y_{t, T}-Y_{t}(u)\right| \leq\left|Y_{t, T}-Y_{t}\left(\frac{t}{T}\right)\right|+\left|Y_{t}\left(\frac{t}{T}\right)-Y_{t}(u)\right|
$$

Bounding both terms is similar, will focus on $\left|Y_{t}\left(\frac{t}{T}\right)-Y_{t}(u)\right|$.

$$
Y_{t}\left(\frac{t}{T}\right)-Y_{t}(u)=\left(\Delta_{t, 0}^{m}+\Delta_{t, 0}^{\sigma} \epsilon_{t}\right)+\sum_{j=1}^{d}\left(\Delta_{t, j}^{m}+\Delta_{t, j}^{\sigma} \epsilon_{t}\right)\left(Y_{t-j}\left(\frac{t}{T}\right)-Y_{t-j}(u)\right)
$$

can rewrite in matrix form

$$
\underline{Y}_{t}\left(\frac{t}{T}\right)-\underline{Y}_{t}(u)=A_{t}\left(\underline{Y}_{t-1}\left(\frac{t}{T}\right)-\underline{Y}_{t-1}(u)\right)+\underline{\xi}_{t}
$$

$$
A_{t}=\left[\begin{array}{cccc}
\Delta t, 1^{m}+\Delta_{t, 1}^{\sigma} \epsilon_{t} & \cdots & \Delta t, d-1^{m}+\Delta_{t, d-1}^{\sigma} \epsilon_{t} & \Delta t, d^{m}+\Delta_{t, d}^{\sigma} \epsilon_{t} \\
1 & & 0 & 0 \\
0 & \ddots & & \vdots \\
0 & & 1 & 0
\end{array}\right]
$$

$$
\underline{\xi}_{t}=\left(\Delta_{t, 0}^{m}+\Delta_{t, 0}^{\sigma} \epsilon_{t}, 0, \ldots, 0\right)^{T}
$$

Iterate the aformentioned matrix form to get

$$
\begin{aligned}
\left\|\underline{Y}_{t}\left(\frac{t}{T}\right)-\underline{Y}_{t}(u)\right\| \leq & \left\|\underline{\xi}_{t}\right\|+\left\|\sum_{r=0}^{n-1} \prod_{k=0}^{r} A_{t-k} \underline{\xi}_{t-r-1}\right\|+ \\
& \left\|\prod_{k=0}^{n} A_{t-k}\left(\underline{Y}_{t-n-1}\left(\frac{t}{T}\right)-\underline{Y}_{t-n-1}(u)\right)\right\|
\end{aligned}
$$

Replace A_{t} matrix with

$$
B_{t}=\left(1+\left|\epsilon_{t}\right|\right) B\left(\Delta_{t}\right)
$$

where

$$
\begin{aligned}
\Delta_{t} & =\Delta 1\left(| | \underline{\epsilon}_{t-1} \|_{\infty} \leq K_{2}\right)+\delta 1\left(\left\|\underline{\epsilon}_{t-1}\right\|_{\infty}>K_{2}\right) \\
\Delta & \geq \sup _{u, y}\left|\partial_{j} m(u, y)\right| \\
\left|\Delta_{t, j}^{m}+\Delta_{t, j}^{\sigma} \epsilon_{t}\right| & \leq \Delta_{t}\left(1+\left|\epsilon_{t}\right|\right)
\end{aligned}
$$

End up with

$$
\begin{aligned}
R_{t, n} & =C\left(1+\left\|\underline{\epsilon}_{t-n-1}\right\|\right)\left\|\prod_{k=0}^{r} B_{t-k} \mid\right\| \\
\left\|\underline{Y}_{t}\left(\frac{t}{T}\right)-\underline{Y}_{t}(u)\right\| & \leq\left|\frac{t}{T}-u\right|\left(C\left(1+\left|\epsilon_{t}\right|\right)+\sum_{r=0}^{\infty} R_{t, r}\right) \\
& =\left|\frac{t}{T}-u\right| V_{t}
\end{aligned}
$$

Need to show ρ-th moment of $\left\|\prod_{k=0}^{r} B_{t-k}\right\|$ converges exponentially fast to 0 as $n \rightarrow \infty$. If we can then $\mathbb{E}\left[\sum_{r=0}^{\infty} R_{t, r}\right]$ can be controlled.

Since matrix norms are equivalent deal with $\|\cdot\|_{1}$ column sums, specifically

$$
\begin{equation*}
\mathcal{B}_{n}=\left\|\prod_{k=0}^{n} B_{t-k}\right\|_{1} \tag{10}
\end{equation*}
$$

General Strategy

- Split into two cases based on a normalized sum of the lag d minimum values of ϵ
- Split product of B matricies into $B(\delta)$ (smaller norm), $B(\Delta)$ (larger norm)
- Choose δ very carefully

For example

$$
\left[\begin{array}{lll}
\delta & \delta & \delta \tag{11}\\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]^{3}=\left[\begin{array}{ccc}
\delta^{3}+2 \delta^{2}+\delta & \delta^{3}+2 \delta^{2} & \delta^{3}+\delta^{2} \\
\delta^{2}+\delta & 2 \delta^{2}+\delta & \delta^{2}+\delta \\
\delta & \delta & \delta
\end{array}\right]
$$

Therefore $\left\|B(\delta)^{d}\right\|_{1} \leq C_{d} \delta$. Then choose a very specific δ equal to

$$
\begin{equation*}
\delta<\left[\left(1+\mathbb{E}\left[\left|\epsilon_{0}\right|\right]\right)^{d /(1-\kappa)}(\Delta+1)^{\kappa d /(1-\kappa)} C_{d}\right]^{-1} \tag{12}
\end{equation*}
$$

Which is not too restrictive (reminding ourselves of how δ related to m

$$
\begin{equation*}
\sup _{u \in \mathbb{R},\|y\|_{\infty}>K_{1}}\left|\partial_{j} m(u, y)\right| \leq \delta<1 \quad\left(K_{1}<\infty\right) \tag{13}
\end{equation*}
$$

So as long as for some large K_{1} the m function has a very small derivative, a small δ is fine.

Here consider kernel estimation for the general model

$$
\begin{equation*}
Y_{t, T}=m\left(\frac{t}{T}, X_{t, T}\right)+\epsilon_{t, T} \tag{14}
\end{equation*}
$$

m identified (theoretically possible to learn true values after getting an infinite number of observations) almost surely on $u \in[0,1]$.

Focus on Nadaraya-Watson (NW) estimation \approx locally weighted averages.

$$
\begin{aligned}
\hat{m}(u, x) & =\frac{\sum_{t=1}^{T} K_{h}(u-t / T) \prod_{j=1}^{d} K_{h}\left(x^{j}-X_{t, T}^{j}\right) Y_{t, T}}{\sum_{t=1}^{T} K_{h}(u-t / T) \prod_{j=1}^{d} K_{h}\left(x^{j}-X_{t, T}^{j}\right)} \\
X_{t, T} & =\left(X_{t, T}^{1}, \ldots, X_{t, T}^{d}\right) \\
x & =\left(x^{1}, \ldots, x^{d}\right), \quad x \in \mathbb{R}^{d}
\end{aligned}
$$

where K a one-dimensional kernel function

Kernel Estimation

Assumption (K2)

The array $\left\{X_{t, T}, Y_{t, T}\right.$ is α-mixing. The mixing coefficients α have the property that for some $A<\infty$ and $\beta>\frac{2 s-2}{s-2}$

$$
\alpha(k) \leq A k^{-\beta}
$$

Thorem 4.1

Assume (K1)-(K3), C(6) and $\beta>\frac{2+s(1+(d+1))}{s-2}, \frac{\phi_{\tau} \log T}{T^{\theta}} h^{d+1}=o(1)$, $\theta=\frac{\beta(1-2 / s)-2 / s-1-(d+1)}{\beta+3-(d+1)}$ where ϕ_{T} slowly diverging (e.g. $\left.\log \log T\right)$.
Finally let S be a compact subset of \mathbb{R}^{d}, and ψ the numerator of the NW estimator. Then it holds

$$
\sup _{u \in[0,1], x \in S}|\hat{\psi}(u, x)-\mathbb{E}[\hat{\psi}(u, x)]|=O_{p}\left(\sqrt{\frac{\log T}{T h^{d+1}}}\right)
$$

Theorem 4.2

Assume (C1)-(C6) hold and (K1)-(K3) fulfilled for both $Y_{t, T}=1$ and $Y_{t, T}=\epsilon_{t, T}$. Let β, θ as in Theorem 4.1 and suppose $\inf _{u \in[0,1], x \in S} f(u, x)>0$. Moreover, assume bandwidth h satisfies

$$
\begin{gathered}
\frac{\phi_{T} \log T}{T^{\theta} h^{d+1}}=o(1) \\
\frac{1}{T^{r} h^{d+r}}=o(1) .
\end{gathered}
$$

Let $\phi_{T}=\log \log T, r=\min (\rho, 1)\left(\rho\right.$ in (C1)). Let $I_{h}=\left[C_{1} h, 1-C_{1} h\right]$. Then

$$
\sup _{u \in h_{h}, x \in S}|\hat{m}(u, x)-m(u, x)|=O_{p}\left(\sqrt{\frac{\log T}{T h^{d+1}}}+\frac{1}{T^{r} h^{d}}+h^{2}\right)
$$

$$
\begin{aligned}
& Y_{t}=(1-t) \sin \left(X_{t}^{3}\right)+t X_{t}+\epsilon_{t} \quad \epsilon_{t} \sim U[0,1] \\
& X_{t}=\theta X_{t-1}+\eta_{t} \quad \eta_{t} \sim \mathcal{N}\left(0, \sigma_{t}\right)
\end{aligned}
$$

Theorem 4.1 techniques used also in Theorem 4.2 proof.

- Preliminaries
- Truncation
- $\hat{\psi}_{2}$
- $\hat{\psi}_{1}$
- $\hat{\psi}_{1}$ Bound

$$
\hat{\psi}(u, x)=\frac{T h^{d+1}}{\sum_{t=1}^{T}} K_{h}\left(u-\frac{t}{T}\right) \prod_{j=1}^{d} K_{h}\left(x^{j}-X_{t, T}^{j}\right) W_{t, T}
$$

- $W_{t, T}$ one dimensional random variables with $\mathbb{E}\left[\left|W_{t, T}\right|^{s}\right] \leq C>\infty$ for some $s>2$
- $\left\{X_{t, T}, W_{t, T}\right\}$ is α-mixing.
- For any compact set $S \subseteq \mathbb{R}^{d}$ where $f_{X_{t, T}}$ the density of $X_{t, T}$ we have

$$
\sup _{t, T} \sup _{x \in S} \mathbb{E}\left[\left|W_{t, T}\right|^{S} \mid X_{t, T}=x\right] f_{X_{t, T}} \leq C
$$

Also define

$$
\begin{aligned}
B & =\left\{(u, x) \in \mathbb{R}^{d+1} \mid u \in[0,1], x \in S\right\} \\
\tau_{T} & =\rho_{T} T^{1 / s} \quad \rho \text { slowly diverging }
\end{aligned}
$$

$\hat{\psi}(u, x)-\mathbb{E}[\hat{\psi}(u, x)]=\left(\hat{\psi}_{1}(u, x)-\mathbb{E}\left[\hat{\psi}_{1}(u, x)\right]\right)+\left(\hat{\psi}_{2}(u, x)-\mathbb{E}\left[\hat{\psi}_{2}(u, x)\right]\right)$
where

$$
\begin{aligned}
& \hat{\psi}_{1}=\frac{1}{T h^{d+1}} \sum_{t=1}^{T} K_{h}\left(u-\frac{t}{T}\right) \prod_{j=1}^{d} K_{h}\left(x^{j}-X_{t, T}^{j}\right) W_{t, T} I\left(\left|W_{t, T}\right| \leq \tau_{T}\right) \\
& \hat{\psi}_{2}=\frac{1}{T h^{d+1}} \sum_{t=1}^{T} K_{h}\left(u-\frac{t}{T}\right) \prod_{j=1}^{d} K_{h}\left(x^{j}-X_{t, T}^{j}\right) W_{t, T} I\left(\left|W_{t, T}\right|>\tau_{T}\right)
\end{aligned}
$$

First let $a_{T}=\sqrt{\log T / T h^{d+1}}$ (the bound is $O_{p}\left(a_{T}\right)$)

$$
\begin{aligned}
P\left(\sup _{(u, x) \in B}\left|\hat{\psi}_{2}(u, x)\right|>C a_{T}\right) & \leq P\left(\mid W_{t, T}>\tau_{T} \text { for some } 1 \leq t \leq T\right) \\
& \leq \underbrace{\frac{\sum_{t=1}^{T} \mathbb{E}\left[\left|W_{t, T}\right|^{s}\right]}{\tau_{T}^{-s}}}_{\text {Chebyshev }} \leq C T \tau_{T}^{-s}=\rho_{T}^{-s} \rightarrow 0
\end{aligned}
$$

Next using law of total expectation

$$
\begin{align*}
\mathbb{E}\left[\mid \hat{\psi}_{2}(u, s)\right] \leq & \frac{1}{T h^{d+1}} \sum_{t=1}^{T} K_{h}\left(u-\frac{t}{T}\right) \int_{\mathbb{R}^{d}} \prod_{j=1}^{d} K_{h}\left(x^{j}-w^{j}\right) \tag{15}\\
& \times \mathbb{E}\left[\left|W_{t, T}\right| I\left(\left|W_{t, T}\right|>\tau_{T}\right) \mid X_{t, T}=w\right] f_{X_{t, T}}(w) d w \tag{16}\\
& \leq \cdots \leq C_{T} \tag{17}
\end{align*}
$$

Therefore $\sup _{(u, x) \in B} \mid \hat{\psi}_{2}(u, x)-\mathbb{E}\left[\hat{\psi}_{2}(u, x) \mid=O_{p}\left(a_{T}\right)\right.$

Theorem 4.2 Proof - $\hat{\psi}_{1}$
Cover the region $B=\left\{(u, x) \in \mathbb{R}^{d+1} \mid u \in[0,1], x \in S\right\}$ with $N \leq C h^{-(d+1)} a_{T}^{-(d+1)}$ balls

$$
\begin{equation*}
B_{n}=\left\{(u, x) \in \mathbb{R}^{d+1} \mid\left\|(u, x)-\left(u_{n}, x_{n}\right)\right\|_{\infty} \leq a_{T} h\right\} \tag{18}
\end{equation*}
$$

midpoints of balls $\left(u_{n}, x_{n}\right)$.

Want to find the difference between $\hat{\psi}_{1}(u, x)$ and $\hat{\psi}\left(u_{n}, x_{n}\right)$. Introduce new kernel

$$
K^{*}(v)=C \prod_{j=0}^{d} I\left(\left|v^{j}\right| \leq 2 C_{1}\right) \quad v \in \mathbb{R}^{d}
$$

then for $(u, x) \in B_{n}, \quad T$ large

$$
\begin{array}{r}
\left|K_{h}\left(u-\frac{t}{T}\right) \prod_{j=1}^{d} K_{h}\left(x^{j}-X_{t, T}^{j}\right)-K_{h}\left(u_{n}-\frac{t}{T}\right) \prod_{j=1}^{d} K_{h}\left(x_{n}^{j}-X_{t, T}^{j}\right)\right| \\
\leq a_{T} K_{h}^{*}\left(u_{n}-\frac{t}{T}, x_{n}-X_{t, T}\right)
\end{array}
$$

Then investigate a modified $\hat{\psi}_{1}$

$$
\begin{equation*}
\tilde{\psi}_{1}=\frac{1}{T h^{d+1}} \sum_{t=1}^{T} K_{h}^{*}\left(u-\frac{t}{T}, x-X_{t, T}\right)\left|W_{t, T}\right| I\left(\mid W_{t, T} \leq \tau_{T}\right) \tag{19}
\end{equation*}
$$

Then analyze how $\tilde{\psi}_{1}$ differs from $\hat{\psi}_{1}$

$$
\begin{aligned}
& \sup _{(u, x) \in B_{n}}\left|\hat{\psi}_{1}(u, x)-\mathbb{E}\left[\hat{\psi}_{1}(u, x)\right]\right| \\
& \leq\left|\hat{\psi}_{1}\left(u_{n}, x_{n}\right)-\mathbb{E}\left[\hat{\psi}_{1}\left(u_{n}, x_{n}\right)\right]\right|+\left|\tilde{\psi}_{1}\left(u_{n}, x_{n}\right)-\mathbb{E}\left[\tilde{\psi}_{1}\left(u_{n}, x_{n}\right)\right]\right|+2 M a_{T}
\end{aligned}
$$

where M a finite constant.
Ideally want the bound to be $O_{p}\left(a_{T}\right)$. Can then investigate

$$
\begin{aligned}
& \hat{Q}_{T}=N \max _{1 \leq n \leq N} P\left(\left|\hat{\psi}_{1}\left(u_{n}, x_{n}\right)-\mathbb{E}\left[\hat{\psi}_{1}\left(u_{n}, x_{n}\right)\right]\right|>M a_{T}\right) \\
& \tilde{Q}_{T}=N \max _{1 \leq n \leq N} P\left(\left|\tilde{\psi}_{1}\left(u_{n}, x_{n}\right)-\mathbb{E}\left[\tilde{\psi}_{1}\left(u_{n}, x_{n}\right)\right]\right|>M a_{T}\right)
\end{aligned}
$$

We can bound \hat{Q}_{T} and \tilde{Q}_{T} (which in this case is rewritten $\approx\left|\sum Z_{t, T}\right|$) with the simple bound

Locally Stationary Additive Models

Assume that regression function can be split up into additive components. For $x \in[0,1]^{d}$ have

$$
\mathbb{E}\left[Y_{T, t} \mid X_{t, T}=x\right]=m_{0}\left(\frac{t}{T}\right)+\sum_{j=1}^{d} m_{j}\left(\frac{t}{T}, x^{j}\right)
$$

Condition imposed that $\int m_{j}\left(u, x^{j}\right) p_{j}\left(u, x^{j}\right) d x^{j}=0$ for all j, u where $p(u, x)$ the density of the strictly stationary process $\left\{X_{t}(u)\right\}$.

Utilize a smooth backfitting technique

$$
\begin{aligned}
& \hat{p}(u, x)=\frac{1}{T_{[0,1]^{d}}} \sum_{t=1}^{T} I\left(X_{t, T} \in[0,1]^{d}\right) K_{h}\left(u, \frac{t}{T}\right) \prod_{j=1}^{d} K_{h}\left(x^{j}, X_{t, T}^{j}\right) \\
& \hat{m}(u, x)=\frac{1}{T_{[0,1]^{d}}} \sum_{t=1}^{T} I\left(X_{t, T} \in[0,1]^{d}\right) K_{h}\left(u, \frac{t}{T}\right) \prod_{j=1}^{d} K_{h}\left(x^{j}, X_{t, T}^{j}\right) Y_{t, T} / \hat{p}(u, x)
\end{aligned}
$$

To determine minimizers for each $u, \tilde{m}_{0}(u), \tilde{m}_{1}(u, \cdot), \ldots, \tilde{m}_{d}(u, \cdot)$ minimizing

$$
\int\left(\hat{m}(u, w)-g_{0}-\sum_{j=1}^{d} g_{j}\left(w^{j}\right)\right)^{2} \hat{p}(u, w) d w
$$

Becomes \approx weighted least squares problem.

Locally Stationary Additive Models - Result

Theorem 5.1

Let $I_{h}=\left[2 C_{1} h, 1-2 C_{1} h\right]$. Then under (Add1) and (Add2)

$$
\sup _{u, x^{j} \in I_{h}}\left|\tilde{m}_{j}\left(u, x^{j}\right)-m_{j}\left(u, x^{j}\right)\right|=O_{p}\left(\sqrt{\frac{\log T}{T h^{2}}}+h^{2}\right)
$$

- Bandwidth selection (plug-in methods)
- Forecasting
- Previous theorems valid for $u \in[C h, 1-C h]$. Ideally get in (1-Ch, 1]
- Boundary-corrected kernels/one-sided kernels
R. Dahlhaus. On the kullback-leibler information divergence of locally stationary processes. Stochastic Processes and their Applications, 62 (1):139-168, 1996. ISSN 0304-4149. doi:
https://doi.org/10.1016/0304-4149(95)00090-9. URL https://www. sciencedirect.com/science/article/pii/0304414995000909.
Rainer Dahlhaus and Suhasini Subba Rao. Statistical inference for time-varying ARCH processes. The Annals of Statistics, 34(3):1075 1114, 2006. doi: 10.1214/009053606000000227. URL https://doi.org/10.1214/009053606000000227.
Eckhard Liebscher. Strong convergence of sums of -mixing random variables with applications to density estimation. Stochastic Processes and their Applications, 65(1):69-80, 1996. ISSN 0304-4149. doi: https://doi.org/10.1016/S0304-4149(96)00096-8. URL https://www.sciencedirect.com/science/article/pii/ S0304414996000968.
Michael Vogt. Nonparametric regression for locally stationary time series. The Annals of Statistics, 40(5):2601-2633, 2012.

