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Motivation

Theory of locally stationary processes one way to model nonstationarity.
[Dahlhaus, 1996] considered time varying spectral representations.

Xt,T = µ
( t

T

)
+

∫ π

−π
exp(iλt)A0

t,T (λ)dξ(λ) (1)

Others considered it within a parametric context (i.e. coefficients change
smoothly over time). [Dahlhaus and Rao, 2006] studied ARCH models
with time-varying coefficients.

Xt,N = σt,NZt , Zt ∼ i.i.d (2)

σ2
t,N = a0

( t

N

)
+
∞∑
j=1

aj
( t

N

)
X 2
t−j,N (3)

This paper introduces nonparametric framework as natural extension to
models with time-varying coefficients.
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General Idea

Yt,T = m
( t

T
,Xt,T

)
+ εt,T t = 1, . . . ,T (4)

with

E[εt,T |Xt,T ] = 0

Yt,T ∈ R
Xt,T ∈ Rd .

Y ,X , ε assumed to be locally stationary, and m is a function which is
allowed to change smoothly over time.
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General Idea - Example

Figure: Estimate m by assuming small segments of Yt,T (LHS) strictly
stationary (RHS ≈ strictly stationary).
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Defining Local Stationarity

Intuition: Locally around each rescaled time point u, the process Xt,T

can be approximated by a stationary process.

Definition 2.1

The process {Xt,T} is locally stationary if for each rescaled time point
u ∈ [0, 1] there exists an associated process {Xt(u)} with the following
two properties

1 {Xt(u)} is strictly stationary with density fXt(u)

2 ||Xt,T − Xt(u)|| ≤
(∣∣ t

T − u
∣∣+ 1

T

)
Ut,T (u) a.s.

where {Ut,T (u)} a process of positive variables with E[Ut,T (u)ρ] < C for
some ρ > 0,C <∞ independent of u, t,T . || · || an arbitrary norm on
Rd .

Since ρ-th moments of Ut,T (u) uniformly bounded, Ut,T (u) = Op(1)
therefore as a result of Definition 2.1

||Xt,T − Xt(u)|| = Op

(∣∣∣ t
T
− u
∣∣∣+

1

T

)
. (5)
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Rest of Presentation

Author looks at three different classes of locally stationary models:

1 Locally stationary nonlinear AR models

2 Kernel estimation

3 Locally stationary additive models
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Locally Stationary Nonlinear AR Models

{Yt,T | t ∈ Z}∞T=1 is a time-varying nonlinear autoregressive process
(tvNAR) if Yt,T evolves according to

Yt,T = m
( t

T
,Y t−d

t−1,T

)
+ σ

( t

T
,Y t−d

t−1,T

)
εt (6)

m(u, y), σ(u, y) smooth functions of rescaled time u

u ≤ 0⇒ m(u, y) = m(0, y) and σ(u, y) = σ(0, y). Similarly for
u ≥ 1⇒ m(u, y) = m(1, y) and σ(u, y) = σ(1, y).

εt are iid mean zero

Then for all u ∈ R the associated process {Yt(u) | t ∈ Z} is

Yt(u) = m(u,Y t−d
t−1 (u)) + σ(u,Y t−d

t−1 (u))εt (7)
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tvNAR Process Assumptions - m

Some conditions sufficient to ensure tvNAR process locally statinoary and
strongly mixing

(M1) m absolutely bounded by constant Cm <∞
(M2) m Lipschitz continuous
|m(u, y)−m(u′, y)| ≤ L|u − u′| ∀ y ∈ Rd for some L <∞
(M3) m continuously differentiable with respect to y , and
∂jm(u, y) = ∂

∂yj
m(u, y) have for some K1 <∞

supu∈R,||y ||∞>K1
|∂jm(u, y)| ≤ δ < 1
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tvNAR Process Assumptions - σ

(Σ1) σ bounded by finite constant Cσ <∞ from above and cσ from
below for all u, y

(Σ2)σ Lipschitz continuous with respect to u

(Σ3) σ continuously differentiable with respect to y , and for
∂jσ(u, y) we have for K1 <∞ we have
supu∈R,||y ||∞>K1

|∂jσ(u, y)| ≤ δ < 1
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tvNAR Process Assumptions - ε

(E1) εt iid, centred E[|εt |1+η] <∞ for some positive η. ε has
everywhere positive continuous density fε.

(E2) fε bounded and Lipschitz ∃ L <∞ such that
fε(z)− fε(z

′)| ≤ L|z − z ′| ∀ z , z ′ ∈ R
(E3) d0, d1 constants 0 ≤ d0 ≤ D0 <∞, |d1 ≤ D1 <∞. fε satisfies∫

R
|fε([1 + d0]z + d1)− fε(z)|dz ≤ CD0,D1(d0 + |d1|) (8)

where CD0,D1 <∞ only depend on bounds D0,D1
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tvNAR Properties

Under assumptions listed we get

1 tvNAR locally stationary

2 tvNAR strongly mixing

3 Auxiliary process {Yt(u)} has densities that vary smoothly with u

Theorem 3.1

Let assumptions (M1)-(M3), (Σ1)-(Σ3), (E1) be fulfilled. Then

1 for each u ∈ R the process {Yt(u), t ∈ Z} has a strictly stationary
solution with εt independent of Yt−k(u) for k > 0

2 the variables Y t−d
t−1 (u) have density fY t−d

t−1 (u)
with respect to Lebesgue

measure

3 the variables Y t−d
t−1,T (u) have density fYt−1,T t−d (u) with respect to

Lebesgue measure
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tvNAR Properties

Theorem 3.2

Let assumptions (M1)-(M3), (Σ1)-(Σ3), (E1) be fulfilled. Then

|Yt,T − Yt(u)| ≤
(∣∣∣ t

T
− u
∣∣∣+

1

T

)
Ut,T (u) a.s.

where variables Ut,T (u) have property that E[(Ut,T (u))ρ] < C for some
ρ > 0 and C <∞ independent of u, t,T .

Figure: The difference between Yt,T (black) relative to Yt(u) increases as u
moves away from 0.5 (blue).
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tvNAR Properties

Theorem 3.1 + Theorem 3.2 ⇒ tvNAR process {Yt,T} is locally
stationary (Definition 2.1).
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tvNAR Properties

Theorem 3.3

Let f (u, y) = fY t−d
t−1 (u)

be the density of Y t−d
t−1 (u) at y ∈ Rd . If

(M1)-(M3),(Σ1)-(Σ3), (E1), (E2) fulfilled then

|f (u, y)− f (v , y)| ≤ Cy |u − v |p

with some constant 0 < p < 1 and Cy <∞ continuously depending on y .
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tvNAR Properties - Mixing Behaviour

We will characterize the mixing behaviour of the tvNAR process.

Recall: Events A,B Independent ⇐⇒ P(A ∩ B) = P(A)P(B)

⇐⇒ P(A|B) = P(A)

Definition - α,β mixing array.

Let (Σ,A,P) be a probability space, and B, C subfields of A. Then

α(B, C) = sup
B∈B,C∈C

|P(B ∩ C )− P(B)P(C )|

β(B, C) = E
[

sup
C∈C
|P(C )− P(C |B)|

]
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tvNAR Properties - Mixing Behaviour

α(k), β(k)

For an array {Zt,T | 1 ≤ t ≤ T}

α(k) = sup
t,T 1≤t≤T−k

α(σ(Zs,T , 1 ≤ s ≤ t), σ(Zs,T , t + k ≤ s ≤ T )

β(k) = sup
t,T 1≤t≤T−k

α(σ(Zs,T , 1 ≤ s ≤ t), σ(Zs,T , t + k ≤ s ≤ T )

The array {Zt,T} is α mixing (strongly mixing) if α(k)→ 0 as k →∞.
Similarly β mixing if β(k)→ 0 as k →∞.

Theorem 3.4

If (M1)-(M3),(Σ1)-(Σ3), (E1)-(E3) fulfilled then the tvNAR process
{Yt,T} is geometrically β mixing, that is, there exist positive constants
γ < 1, C <∞ such that β(k) ≤ Cγk .
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tvNAR Properties - Mixing Behaviour

Figure: As k increases the values that Z1, . . . ,Zt take effect the values
Zt+k , . . . ,ZT take less and less.

David Veitch March 31 2022 18 / 45



Theorem 3.2 Outline

1 Preliminaries

2 Triangle Inequality

3 Backward Iteration

4 Triangle Inequality Bound

5 Bounding Norm of Matrix Product
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Theorem 3.2 Outline - Preliminaries

Different types of Y

Yt,T = m
( t

T
,Y t−d

t−1,T

)
+ σ

( t

T
,Y t−d

t−1,T

)
εt Locally Stationary

Yt(u) = m
(
u,Y t−d

t−1,T (u)
)

+ σ
(
u,Y t−d

t−1,T (u)
)
εt Strictly Stationary

Y t,T = Y t−d+1
t,T = (Yt−d+1,T ,Yt−d+2,T , . . . ,Yt−1,T ,Yt,T )

Y t,T (u) = Y t−d+1
t,T (u) = (Yt−d+1,T (u),Yt−d+2,T (u), . . . ,Yt−1,T (u),Yt,T (u))
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Theorem 3.2 Outline - Preliminaries

Linearization ∆ Terms

By mean value theorem and Taylor’s theorem

m(v ,Y t−1(v))−m(u,Y t−1(u)) = ∆m
t,0 +

d∑
j=1

∆m
t,j(Yt−j(v)− Yt−j(u))

∆m
t,0 = m(v ,Y t−1(v))−m(u,Y t−1(v))

∆m
t,j = ∆m

j (u,Y t−1(u),Y t−1(v))

∆m
j (u, y , y ′) =

∫ 1

0

∂jm(u, y + s(y ′ − y))ds
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Theorem 3.2 Outline - Preliminaries

Matrix Notation

- || · || Euclidean norm for vectors
- Spectral norm for d × d matrices ||A||2 = max||x||=1 |Ax | =square root

of max eigenvalue ATA
- Matrices of these forms are used

B(z) =


z · · · z z
1 0 0

. . .
...

0 1 0

 (9)
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Theorem 3.2 Outline - Triangle Inequality

|Yt,T − Yt(u)| ≤
∣∣∣Yt,T − Yt

( t

T

)∣∣∣+
∣∣∣Yt

( t

T

)
− Yt(u)

∣∣∣
Bounding both terms is similar, will focus on

∣∣Yt

(
t
T

)
− Yt(u)

∣∣.
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Theorem 3.2 Outline - Backward Iteration

Yt

( t

T

)
− Yt(u) = (∆m

t,0 + ∆σ
t,0εt) +

d∑
j=1

(∆m
t,j + ∆σ

t,jεt)
(
Yt−j

( t

T

)
− Yt−j(u)

)
can rewrite in matrix form

Y t

( t

T

)
− Y t(u) = At

(
Y t−1

( t

T

)
− Y t−1(u)

)
+ ξ

t

At =


∆t, 1m + ∆σ

t,1εt · · · ∆t, d − 1m + ∆σ
t,d−1εt ∆t, dm + ∆σ

t,dεt
1 0 0

. . .
...

0 1 0


ξ
t

= (∆m
t,0 + ∆σ

t,0εt , 0, . . . , 0)T
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Theorem 3.2 Outline - Backward Iteration

Iterate the aformentioned matrix form to get

∣∣∣∣∣∣Y t

( t

T

)
− Y t(u)

∣∣∣∣∣∣ ≤ ||ξ
t
||+

∣∣∣∣∣
∣∣∣∣∣
n−1∑
r=0

r∏
k=0

At−kξt−r−1

∣∣∣∣∣
∣∣∣∣∣+∣∣∣∣∣

∣∣∣∣∣
n∏

k=0

At−k

(
Y t−n−1

( t

T

)
− Y t−n−1(u)

)∣∣∣∣∣
∣∣∣∣∣

Replace At matrix with

Bt = (1 + |εt |)B(∆t)

where

∆t = ∆1(||εt−1||∞ ≤ K2) + δ1(||εt−1||∞ > K2)

∆ ≥ sup
u,y
|∂jm(u, y)|

|∆m
t,j + ∆σ

t,jεt | ≤ ∆t(1 + |εt |)
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Theorem 3.2 Outline - Backward Iteration

End up with

Rt,n = C (1 + ||εt−n−1||)

∣∣∣∣∣
∣∣∣∣∣

r∏
k=0

Bt−k

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣Y t

( t

T

)
− Y t(u)

∣∣∣∣∣∣ ≤ ∣∣∣ t
T
− u
∣∣∣(C (1 + |εt |) +

∞∑
r=0

Rt,r

)
=
∣∣∣ t
T
− u
∣∣∣Vt
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Theorem 3.2 Outline - Bounding Norm of Matrix Product

Need to show ρ-th moment of ||
∏r

k=0 Bt−k || converges exponentially fast
to 0 as n→∞. If we can then E[

∑∞
r=0 Rt,r ] can be controlled.

Since matrix norms are equivalent deal with || · ||1 column sums,
specifically

Bn =

∣∣∣∣∣
∣∣∣∣∣

n∏
k=0

Bt−k

∣∣∣∣∣
∣∣∣∣∣
1

(10)

General Strategy

Split into two cases based on a normalized sum of the lag d
minimum values of ε

Split product of B matricies into B(δ) (smaller norm),B(∆) (larger
norm)

Choose δ very carefully

David Veitch March 31 2022 27 / 45



Theorem 3.2 Outline - Bounding Norm of Matrix Product

For exampleδ δ δ
1 0 0
0 1 0

3

=

δ3 + 2δ2 + δ δ3 + 2δ2 δ3 + δ2

δ2 + δ 2δ2 + δ δ2 + δ
δ δ δ

 (11)

Therefore ||B(δ)d ||1 ≤ Cdδ. Then choose a very specific δ equal to

δ < [(1 + E[|ε0|])d/(1−κ)(∆ + 1)κd/(1−κ)Cd ]−1 (12)

Which is not too restrictive (reminding ourselves of how δ related to m

sup
u∈R,||y ||∞>K1

|∂jm(u, y)| ≤ δ < 1 (K1 <∞) (13)

So as long as for some large K1 the m function has a very small
derivative, a small δ is fine.
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Kernel Estimation

Here consider kernel estimation for the general model

Yt,T = m
( t

T
,Xt,T

)
+ εt,T (14)

m identified (theoretically possible to learn true values after getting an
infinite number of observations) almost surely on u ∈ [0, 1].

Focus on Nadaraya-Watson (NW) estimation ≈ locally weighted
averages.

m̂(u, x) =

∑T
t=1 Kh(u − t/T )

∏d
j=1 Kh(x j − X j

t,T )Yt,T∑T
t=1 Kh(u − t/T )

∏d
j=1 Kh(x j − X j

t,T )

Xt,T = (X 1
t,T , . . . ,X

d
t,T )

x = (x1, . . . , xd), x ∈ Rd

where K a one-dimensional kernel function
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Kernel Estimation

Assumption (K2)

The array {Xt,T ,Yt,T is α-mixing. The mixing coefficients α have the
property that for some A <∞ and β > 2s−2

s−2

α(k) ≤ Ak−β

Thorem 4.1

Assume (K1)-(K3), C(6) and β > 2+s(1+(d+1))
s−2 ,φT logT

Tθ
hd+1 = o(1),

θ = β(1−2/s)−2/s−1−(d+1)
β+3−(d+1) where φT slowly diverging (e.g. log logT ).

Finally let S be a compact subset of Rd , and ψ the numerator of the NW
estimator. Then it holds

sup
u∈[0,1], x∈S

∣∣∣ψ̂(u, x)− E[ψ̂(u, x)]
∣∣∣ = Op

(√
logT

Thd+1

)
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Kernel Estimation - Uniform Convergence

Theorem 4.2

Assume (C1)-(C6) hold and (K1)-(K3) fulfilled for both Yt,T = 1 and
Yt,T = εt,T . Let β, θ as in Theorem 4.1 and suppose
infu∈[0,1],x∈S f (u, x) > 0. Moreover, assume bandwidth h satisfies

φT logT

T θhd+1
= o(1)

1

T rhd+r
= o(1).

Let φT = log logT , r = min(ρ, 1) (ρ in (C1)). Let Ih = [C1h, 1− C1h].
Then

sup
u∈Ih,x∈S

|m̂(u, x)−m(u, x)| = Op

(√
logT

Thd+1
+

1

T rhd
+ h2

)
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Kernel Estimation - Simulation

Yt = (1− t) sin(X 3
t ) + tXt + εt εt ∼ U[0, 1]

Xt = θXt−1 + ηt ηt ∼ N (0, σt)
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Theorem 4.1 Proof - Outline

Theorem 4.1 techniques used also in Theorem 4.2 proof.

Preliminaries

Truncation

ψ̂2

ψ̂1

ψ̂1 Bound
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Theorem 4.1 Proof - Preliminaries

ψ̂(u, x) =
Thd+1∑ T

t=1

Kh

(
u − t

T

) d∏
j=1

Kh(x j − X j
t,T )Wt,T

Wt,T one dimensional random variables with E[|Wt,T |s ] ≤ C >∞
for some s > 2

{Xt,T ,Wt,T} is α−mixing.

For any compact set S ⊆ Rd where fXt,T
the density of Xt,T we have

sup
t,T

sup
x∈S

E[|Wt,T |s |Xt,T = x ]fXt,T
≤ C

Also define

B = {(u, x) ∈ Rd+1 | u ∈ [0, 1], x ∈ S}
τT = ρTT

1/s ρ slowly diverging
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Theorem 4.1 Proof - Truncation

ψ̂(u, x)− E[ψ̂(u, x)] = (ψ̂1(u, x)− E[ψ̂1(u, x)]) + (ψ̂2(u, x)− E[ψ̂2(u, x)])

where

ψ̂1 =
1

Thd+1

T∑
t=1

Kh

(
u − t

T

) d∏
j=1

Kh(x j − X j
t,T )Wt,T I (|Wt,T | ≤ τT )

ψ̂2 =
1

Thd+1

T∑
t=1

Kh

(
u − t

T

) d∏
j=1

Kh(x j − X j
t,T )Wt,T I (|Wt,T | > τT )
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Theorem 4.1 Proof - ψ̂2

First let aT =
√

logT/Thd+1 (the bound is Op(aT ))

P

(
sup

(u,x)∈B
|ψ̂2(u, x)| > CaT

)
≤ P(|Wt,T > τT for some 1 ≤ t ≤ T )

≤
∑T

t=1 E[|Wt,T |s ]

τ−sT︸ ︷︷ ︸
Chebyshev

≤ CT τ−sT = ρ−sT → 0

Next using law of total expectation

E[|ψ̂2(u, s)] ≤ 1

Thd+1

T∑
t=1

Kh

(
u − t

T

)∫
Rd

d∏
j=1

Kh(x j − w j) (15)

× E[|Wt,T |I (|Wt,T | > τT )|Xt,T = w ]fXt,T
(w)dw (16)

≤ · · · ≤ CaT (17)

Therefore sup(u,x)∈B |ψ̂2(u, x)− E[ψ̂2(u, x)| = Op(aT )
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Theorem 4.2 Proof - ψ̂1

Cover the region B = {(u, x) ∈ Rd+1 | u ∈ [0, 1], x ∈ S} with

N ≤ Ch−(d+1)a
−(d+1)
T balls

Bn = {(u, x) ∈ Rd+1 | ||(u, x)− (un, xn)||∞ ≤ aTh} (18)

midpoints of balls (un, xn).
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Theorem 4.2 Proof - ψ̂1

Want to find the difference between ψ̂1(u, x) and ψ̂(un, xn). Introduce
new kernel

K∗(v) = C
d∏

j=0

I (|v j | ≤ 2C1) v ∈ Rd

then for (u, x) ∈ Bn, T large∣∣∣∣∣∣Kh

(
u − t

T

) d∏
j=1

Kh(x j − X j
t,T )− Kh

(
un −

t

T

) d∏
j=1

Kh(x jn − X j
t,T )

∣∣∣∣∣∣
≤ aTK

∗
h

(
un −

t

T
, xn − Xt,T

)
Then investigate a modified ψ̂1

ψ̃1 =
1

Thd+1

T∑
t=1

K∗h

(
u − t

T
, x − Xt,T

)
|Wt,T |I (|Wt,T ≤ τT ) (19)
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Theorem 4.2 Proof - ψ̂1

Then analyze how ψ̃1 differs from ψ̂1

sup
(u,x)∈Bn

∣∣∣ψ̂1(u, x)− E[ψ̂1(u, x)]
∣∣∣

≤
∣∣∣ψ̂1(un, xn)− E[ψ̂1(un, xn)]

∣∣∣+
∣∣∣ψ̃1(un, xn)− E[ψ̃1(un, xn)]

∣∣∣+ 2MaT

where M a finite constant.

Ideally want the bound to be Op(aT ). Can then investigate

Q̂T = N max
1≤n≤N

P(|ψ̂1(un, xn)− E[ψ̂1(un, xn)]| > MaT )

Q̃T = N max
1≤n≤N

P(|ψ̃1(un, xn)− E[ψ̃1(un, xn)]| > MaT )
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Theorem 4.1 Proof - ψ̂1 Bound

We can bound Q̂T and Q̃T (which in this case is rewritten ≈ |
∑

Zt,T |)
with the simple bound
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Locally Stationary Additive Models

Assume that regression function can be split up into additive
components. For x ∈ [0, 1]d have

E[YT ,t |Xt,T = x ] = m0

( t

T

)
+

d∑
j=1

mj

( t

T
, x j
)

Condition imposed that
∫
mj(u, x

j)pj(u, x
j)dx j = 0 for all j , u where

p(u, x) the density of the strictly stationary process {Xt(u)}.
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Locally Stationary Additive Models - Estimation

Utilize a smooth backfitting technique

p̂(u, x) =
1

T[0,1]d

T∑
t=1

I (Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

) d∏
j=1

Kh(x j ,X j
t,T )

m̂(u, x) =
1

T[0,1]d

T∑
t=1

I (Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

) d∏
j=1

Kh(x j ,X j
t,T )Yt,T/p̂(u, x)

To determine minimizers for each u, m̃0(u), m̃1(u, ·), . . . , m̃d(u, ·)
minimizing

∫ m̂(u,w)− g0 −
d∑

j=1

gj(w
j)

2

p̂(u,w)dw

Becomes ≈ weighted least squares problem.
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Locally Stationary Additive Models - Result

Theorem 5.1

Let Ih = [2C1h, 1− 2C1h]. Then under (Add1) and (Add2)

sup
u,x j∈Ih

|m̃j(u, x
j)−mj(u, x

j)| = Op

(√
logT

Th2
+ h2

)

David Veitch March 31 2022 43 / 45



Extensions

Bandwidth selection (plug-in methods)

Forecasting

Previous theorems valid for u ∈ [Ch, 1− Ch]. Ideally get in
(1− Ch, 1]
Boundary-corrected kernels/one-sided kernels
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