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Theory of locally stationary processes one way to model nonstationarity.
[Dahlhaus, 1996] considered time varying spectral representations.

Xor = (5)+ [ e (e 1

—T

Others considered it within a parametric context (i.e. coefficients change
smoothly over time). [Dahlhaus and Rao, 2006] studied ARCH models
with time-varying coefficients.

Xt,N == Ut,NZta Zt ~iid (2)
U?,N = ao (%) + Zaj (%) Xt27j7N (3)
j=1

This paper introduces nonparametric framework as natural extension to
models with time-varying coefficients.
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General ldea

t

nf:m(r

,mj)+qr t=1,...,T (4)
with

I['E[Gt,T|Xt,T] =0
Yt,T S R
X, € RY.

Y, X, € assumed to be locally stationary, and m is a function which is
allowed to change smoothly over time.
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General |Idea - Example

Figure: Estimate m by assuming small segments of Y; 1+ (LHS) strictly
stationary (RHS = strictly stationary).
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Defining Local Stationarity

Intuition: Locally around each rescaled time point u, the process X;
can be approximated by a stationary process.

Definition 2.1

The process {X; 7} is locally stationary if for each rescaled time point
u € [0, 1] there exists an associated process {X;(u)} with the following
two properties

@ {X:(u)} is strictly stationary with density fx, (.
Q@ [IXer — Xe(w)l| < (|£ — u] + 1) Up r() as.
where {U; 1(u)} a process of positive variables with E[U; 7(u)?] < C for

some p > 0, C < oo independent of u,t, T. || - || an arbitrary norm on
R,

Since p-th moments of Uy r(u) uniformly bounded, U; r(u) = Op(1)
therefore as a result of Definition 2.1

er = Xl = 0, (|7~ o + 7). )
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Rest of Presentation

Author looks at three different classes of locally stationary models:
@ Locally stationary nonlinear AR models
@ Kernel estimation

© Locally stationary additive models
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Locally Stationary Nonlinear AR Models

{Ye1 | t € Z}%F_, is a time-varying nonlinear autoregressive process
(tvNAR) if Y; 7 evolves according to

Yer =m (%7 Ytt:fT) +o <%> Ytt:lt{T) €t (6)
e m(u,y),o(u,y) smooth functions of rescaled time u
e u<0= m(u,y)=m(0,y) and o(u,y) = (0, y). Similarly for
u>1=m(u,y)=m(l,y) and o(u,y) = o(1,y).
@ ¢; are iid mean zero
Then for all u € R the associated process {Y:(u) | t € Z} is

Ye(u) = m(u, Y{Z () + o (u, YT (0)ee (7)
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tvNAR Process Assumptions - m

Some conditions sufficient to ensure tvNAR process locally statinoary and
strongly mixing
@ (M1) m absolutely bounded by constant C,, < o0
e (M2) m Lipschitz continuous
Im(u,y) — m(u',y)| < Llu—u'|Vy € R? for some L < oo
@ (M3) m continuously differentiable with respect to y, and
oim(u,y) = a%,m(u,y) have for some K; < oo
J
SUP LR, ||y | > Ki 0im(u,y)| <d<1

m(u, y)

c,,,-f
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tvNAR Process Assumptions - o

@ (X1) o bounded by finite constant C, < oo from above and ¢, from
below for all u, y

@ (X2)o Lipschitz continuous with respect to u

@ (X3) o continuously differentiable with respect to y, and for
Ojo(u, y) we have for K; < oo we have

SUPueR, ||yl >k 1050 (U, y)| <6 <1
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tvNAR Process Assumptions - €

o (E1) € iid, centred E[|e,|'™] < oo for some positive 7. € has
everywhere positive continuous density f..

e (E2) f. bounded and Lipschitz 3 L < oo such that
f(z)— £(2) < Llz— 2|V 2,7 € R
e (E3) dp, di constants 0 < dp < Dy < 0, |di < Dy < 00. f, satisfies

/R (L + dolz + ch) — £(2)|dz < Coy py(co +|ch])  (8)

where Cp, p, < 0o only depend on bounds Dy, D;

David Veitch March 31 2022 11 / 45



tvNAR Properties

Under assumptions listed we get
© tvNAR locally stationary
@ tvNAR strongly mixing

@ Auxiliary process {Y;(u)} has densities that vary smoothly with u

Theorem 3.1
Let assumptions (M1)-(M3), (X1)-(X3), (E1) be fulfilled. Then

@ for each u € R the process {Y;(u), t € Z} has a strictly stationary
solution with €; independent of Y;_,(u) for k >0

@ the variables Y~ (u) have density fye-9(,) With respect to Lebesgue
measure

@ the variables Ytt:fT(u) have density fy, | 7¢-a(,) with respect to
Lebesgue measure
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tvNAR Properties

Theorem 3.2
Let assumptions (M1)-(M3), (X1)-(X3), (E1) be fulfilled. Then

t 1
|Ye,r — Ye(u)| < ()T - u‘ T T) Ui r(u) as.

where variables Uy 1(u) have property that E[(U; 7(u))?] < C for some
p >0 and C < oo independent of u, t, T.

T T T T T T
00 02 04 06 08 10

Figure: The difference between Y: 1 (black) relative to Y:(u) increases as u
moves away from 0.5 (blue).
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tvNAR Properties

Theorem 3.1 + Theorem 3.2 = tvNAR process {Y; 7} is locally
stationary (Definition 2.1).
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tvNAR Properties

Theorem 3.3

Let f(u,y) = fye—g(,) be the density of Yid(u)aty e RY. If
(M1)-(M3),(£1)-(£3), (E1), (E2) fulfilled then

f(u,y) = F(v,y) < Glu—v|?

with some constant 0 < p < 1 and C, < oo continuously depending on y.
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tvNAR Properties - Mixing Behaviour

We will characterize the mixing behaviour of the tvNAR process.

Recall: Events A, B Independent < P(AN B) = P(A)P(B)
<= P(A|B) = P(A)

Definition - «, 3 mixing array.
Let (X, A, P) be a probability space, and B, C subfields of A. Then

a(B,C)= sup |P(BNC)— P(B)P(C)]
BeB,CeC

B(B,C) = E |sup |P(C) — P(C|B)]
CeC
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tvNAR Properties - Mixing Behaviour

For an array {Z; 7 |1 <t < T}

a(k) = sup a(o(Zs 7,1 <s<t),o(Z7,t+k<s<T)
6T 1<t<T—k

B(k) = sup a(o(Zs,7,1 <s<t),o(Zs7,t+k<s<T)
6T 1<t<T—k

The array {Z; 7} is @ mixing (strongly mixing) if a(k) — 0 as k — cc.
Similarly 8 mixing if (k) — 0 as k — occ.

Theorem 3.4

If (M1)-(M3),(X1)-(Xx3), (E1)-(E3) fulfilled then the tvNAR process
{Y: 1} is geometrically 8 mixing, that is, there exist positive constants
7 <1, C < oo such that B(k) < C~X.
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tvNAR Properties - Mixing Behaviour

5 I N i
7 7] o
T ' 7\ T T T \o T T
-4 -2 0 2 4 -4 -2 1] 2 -3 -2 -1 0 1 2
Z6,. . Z20 Z_10,..Z_20 Z_15...Z_20
Figure: As k increases the values that Zi, ..., Z; take effect the values

Zivk,y ..., ZT take less and less.
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Theorem 3.2 QOutline

@ Preliminaries

@ Triangle Inequality

© Backward Iteration

@ Triangle Inequality Bound

© Bounding Norm of Matrix Product
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Theorem 3.2 Outline - Preliminaries

Different types of Y

t t
Yir=m (77 Yttjl‘{T) +o (7, Yttjl‘{T) €; Locally Stationary
Yi(u)=m (u7 Ytt:fT(”)> +o (u, Ytt:ﬁT(”)) €: Strictly Stationary
Y.r= Yrt,_Td+1 =(Yeedr1,7, Yeed2, Ty -5 Yeo1,7, Y0, 7)

Y. r(u)= Yf,?’“(“) = (Yeeat1,7(0), Yecayo,7(u), ..., Yee1,7(u), Ye, 7(u))
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Theorem 3.2 Outline - Preliminaries

Linearization A Terms

By mean value theorem and Taylor's theorem

d

m(v, Y, 1(v)) = m(u, ¥, (v)) = A + ZA'JL-(YH(V) = Yej(u))

Afo =m(v, Y, 1(v)) = m(u, Y, _1(v))

ATJ = Ajm(u7xt—l(u)7 Y, 1(v))

1
AT(u,y,y") = / om(u,y +s(y’ —y))ds
0
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Theorem 3.2 Outline - Preliminaries

Matrix Notation

- || - || Euclidean norm for vectors

- Spectral norm for d x d matrices [|A||2 = max||,|=1 |Ax| =square root
of max eigenvalue AT A

- Matrices of these forms are used

—
O N
O N
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Theorem 3.2 Outline - Triangle Inequality

t
|Yer — Yi(u)| < ‘Yt,T -Y: (7)‘

() v
) = Ye(u)]-

Bounding both terms is similar, will focus on ’Yt %
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Theorem 3.2 Outline - Backward Iteration

Ye (L) — Yi(u) = (Ao + Ager) + zd:(A;'jj + a7 (Yo (;) a0)

T .
j=1

can rewrite in matrix form

t t
Y, (7) _Xt(u) = A (xt—l (7) _Xt—l(“)> +§t
At 1™+ A7y - At,d -1+ A7y qe At d™ + A7 jer

1 0 0

At - .
0 1 0

§t = (AZO + Agoet, O, ey O)T
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Theorem 3.2 Outline - Backward Iteration

Iterate the aformentioned matrix form to get

RACORE H<Hf“+

n—1 r

ZHAt kgt r—1

r=0 k=0

(e (5) -vmm)H

Replace A; matrix with
Be = (1+ |e:|)B(A:)
where

Ac = A1l il < K2) +01(]leeyloc > K2)
A > sup o;m(u, )|
uy
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Theorem 3.2 Outline - Backward Iteration

End up with

Rt,n = C(l + ||§t—n—1H)

H Bi_«
k=0

Hlt (%) —Xt(U)H < ’% - u‘ (C(l + let|) + i Rt’,)
r=0

t
=7 v
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Theorem 3.2 Outline - Bounding Norm of Matrix Product

Need to show p-th moment of || [T, _, B:—«|| converges exponentially fast
to 0 as n — oo. If we can then E[Y 2, R ] can be controlled.

Since matrix norms are equivalent deal with || - ||; column sums,
specifically

B, =

n
H B:«
k=0 1
General Strategy

@ Split into two cases based on a normalized sum of the lag d
minimum values of ¢

@ Split product of B matricies into B(d) (smaller norm),B(A) (larger
norm)

@ Choose 9 very carefully
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Theorem 3.2 Outline - Bounding Norm of Matrix Product

For example

5 6 61° 034202+ 63+202 63462
1 0 0] = §2+4 20246  82+94 (11)
010 5 5 5

Therefore ||B(6)?||1 < C48. Then choose a very specific & equal to
6 < [(1+E[leo)¥C=(A + 1)/ ) (12)
Which is not too restrictive (reminding ourselves of how ¢ related to m

sup |0im(u,y)| <d <1 (Ki <o) (13)
UER, ||y |loo > K

So as long as for some large K; the m function has a very small
derivative, a small § is fine.
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Kernel Estimation

Here consider kernel estimation for the general model

s

t
YtT:m(7,Xt,T)+€t,T (14)

m identified (theoretically possible to learn true values after getting an
infinite number of observations) almost surely on u € [0, 1].

Focus on Nadaraya-Watson (NW) estimation = locally weighted
averages.

Et 1Kh(“—t/T)H y Kn(>! _Xt Yot
o 1Kh(uft/T)l'L y Kn(¥ = X 1)
Xer=Xbro o X07)

x=(x'...,x%), xeR?

where K a one-dimensional kernel function
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Kernel Estimation

Assumption (K2)

The array {X;,1, Y, 7 is a-mixing. The mixing coefficients o have the
property that for some A < oo and 3 > 25=2

s—2

a(k) < Ak=P

v

Thorem 4.1

Assume (K1)-(K3), C(6) and g > ZreUHdHD) drloe T pd i1 — (1),

=z
0= ﬂ(l_z/ﬁslgi/(f;ll)_(dﬂ) where ¢ slowly diverging (e.g. loglog T).

Finally let S be a compact subset of R, and v the numerator of the NW
estimator. Then it holds

sup @(u,x)—E[«z(u,xn\:op( '°gT)

uef0,1], xS Thd+1
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Kernel Estimation - Uniform Convergence

Theorem 4.2

Assume (C1)-(C6) hold and (K1)-(K3) fulfilled for both Y; + =1 and
Y: T =€, 7. Let 3,0 as in Theorem 4.1 and suppose
infuefo,1],xes f(u, x) > 0. Moreover, assume bandwidth h satisfies

orlog T
opar = o)

1
Fopaer — o)

Let ¢7 = loglog T, r = min(p, 1) (p in (C1)). Let Iy = [Gih,1 — Gy h].
Then

log T 1 5
0 — = O _— _— h
uejhu’fes|m(u,x) m(u, x)| b < T + Trhd I )
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Kernel Estimation - Simulation

Ye=(1—t)sin(X?) + tX; + e € ~ U[0,1]
Xe =0Xe—1+n: ne ~N(0,0¢)

X Trend X MA(1) Coefficient X Noise Standard Deviation X
o 2 S 2
o @ B
= v
o
~ @ | @
= (=1
= - . o o
= S
R S 1 *
@ a s | =l
2 = 3
— ¥
© T m-hat
, I IR
o~ bl
e
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o
b
©
T T T T T T
0 200 400 600 800 1000
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Theorem 4.1 Proof - Outline

Theorem 4.1 techniques used also in Theorem 4.2 proof.
@ Preliminaries
@ Truncation
° 1/32
o
° 1&1 Bound
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Theorem 4.1 Proof - Preliminaries

Thd+1 T

O(u,x) = 5 (u——)[[ )W, T

t=1

e W, 1 one dimensional random variables with E[|W; 7|*] < C > oo
for some s > 2

o {Xi 1, W, 1} is a—mixing.
@ For any compact set S C R where fx., the density of X; 7 we have

supsup E[|Ws, 7[°|Xe, 7 = xIfi, < C
t, T x€S

Also define

B = {(u,x) eR¥? |ue0,1],x € S}
7 = prTH* pslowly diverging
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Theorem 4.1 Proof - Truncation

~

D(u,x) = Bl (u, X)) = (1 (u, x) = B[ (u, x)]) + ($2(u, x) = Eltha(u, x)])

where

= hd+1ZKh (u——)HKh AWe rl(|Wer| < 7r)

o = ThdHZKh(U—*)HKh XL )We rl((Wer| > 77)
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Theorem 4.1 Proof - 1,

First let ar = y/log T/ Th9+! (the bound is O,(ar))

P < sup |do(u,x)| > CaT> < P(|Wet > 77 forsome1<t<T)
(u,x)eB

Et lEHWt T| ] < CTT_S
T

=pr =0
Chebyshev

Next using law of total expectation

E[|tha(u, 5)] < Thd+1 Z K (u - 7) / H Kn(x) — w) (15)

x E[|We r[I(|We, 7| > Tr)\Xf,r = w]fx, ;(w)dw  (16)
<< Car (17)

Therefore sup, e [¢2(u; X) — E[$2(u, x)| = Op(ar)
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Theorem 4.2 Proof - 1/

Cover the region B = {(u,x) € R | u €[0,1],x € S} with
N < Ch=(@+D) a2+ ol

By = {(u,x) € R [ [|(u, %) = (un, Xn)l[ oo < arh} (18)

midpoints of balls (up, x,).
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Theorem 4.2 Proof - 1/

Want to find the difference between 11 (u, x) and $(u,, x,). Introduce
new kernel

d
K*(v)=C]JI(v|<2G) veR?
j=0
then for (u,x) € B,, T large

(u——)HKh Kh(un——)HKh

t

§ aTI'(;;< (Un - 77Xn - Xt,T)

Then investigate a modified 1
- 1 -, t
¢1:W2Kh (U—7aX—Xt,T>|Wt,T|/(|Wt,T§TT) (19)
t=1
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Theorem 4.2 Proof - 1/

Then analyze how 1y differs from 1,21

sup ‘wl u,x) — Ef[¢y(u, X)]‘
(u,x)€B,

S '(/)l(um Xn) - E[¢1(Un, Xn

+ @1, x0) = Bl 30)]| + 2Mar
where M a finite constant.

Ideally want the bound to be Op(ar). Can then investigate

QT N N1r<nna<xN P(M/jl(un’x”) ]E[/lz;l(unyxn)H > /\/IaT)

Qr = Nlrgnna;N P(|¢1(tun, xn) — E[¢h1(tn, xn)]| > Mat)
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Theorem 4.1 Proof - ¢); Bound

We can bound Q7 and Q7 (which in this case is rewritten ~ | 3" Z, 1)
with the simple bound

David Veitch March 31 2022 40 / 45



Locally Stationary Additive Models

Assume that regression function can be split up into additive
components. For x € [0,1]¢ have

E[YT,:|Xe,7 = x] = mo (%) + i m; (%,xj)
j=1

Condition imposed that | m;(u,x/)p;(u,x)dx/ = 0 for all j, u where
p(u, x) the density of the strictly stationary process {X;(u)}.
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Locally Stationary Additive Models - Estimation

Utilize a smooth backfitting technique

r d
o) t . .
p(u, Tow Z (Xe,T €10, 119K, (u, ?) H K”(XJ’X#,T)
j=1
g £t 1 o
r/h( [O 1] Z Xt,T S [07 1]d)Kh (U, 7) H Kh(XJ7X#’T) YnT/ﬁ(U,X)
=1 =1
To determine minimizers for each u, mg(u), M (u,-),..., Mq(u,-)
minimizing

2

[ #tww)—g =Y ) | plusw)aw

Becomes ~ weighted least squares problem.
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Locally Stationary Additive Models - Result

Let [, = [2C1h, 1 — 2C1h]. Then under (Add1) and (Add2)

] . log T
sup rﬁj(u,xf>—m,-(u,xf)|=0p( = +h2>
u,xi€ly
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Extensions

e Bandwidth selection (plug-in methods)
@ Forecasting

e Previous theorems valid for u € [Ch,1 — Ch]. Ideally get in
(1—Ch,1]
e Boundary-corrected kernels/one-sided kernels
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