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Visual Depiction

Figure: Example of 3 samples of functional time series.

In a functional time series your observations Xt , t = 1, . . . , n are func-
tions.
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Visual Depiction

It is harder to visualize for the brain, but we can treat the data from MRI
images as a 3D function collected over time.

Figure: Visual representation of change in covariance between brain regions [1].

Figure: Visualization of a smooth function of 3 variables[3].
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Paper Overview

Stoehr, Christina, John AD Aston, and Claudia Kirch. “Detecting
changes in the covariance structure of functional time series with
application to fMRI data.” Econometrics and Statistics 18 (2021):
44-62.

Many fMRI studies examine correlation betweeen brain regions

These studies rely on strong assumption that fMRI data is both first
(mean) and second (covariance) order stationary (i.e. not changing
over time)

Previous work by authors [5] on testing for changes in the mean of
functional time series.

This paper: model brain as a functional time series → look for
changes covariance structure of these functions
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Why Functional Time Series Approach?

Data being discretized when it is not originally discrete

Voxelwise approach leads to multiple testing problem, and low power
for small, spatially-distributed signals

Functional approach → leverage functional properties (e.g. spatial
smoothness) and then utilize a variety of statistical tools
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Theoretical Background [8]

Definition 1 (Linear Operator)

A mapping A : E → F where E ,F vector spaces over field K called a
linear operator from E to F if

A(x + y) = Ax + Ay (1)

A(λx) = λAx . (2)

Definition 2 (L)

Space of bounded linear operators on separable Hilbert space H with
norm

||Φ||L = sup{||Φ|| | ||x || ≤ 1}.
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Theoretical Background

Definition 3 (Compact)

A operator Φ ∈ L is compact if ∃ two orthonormal bases {vj}, {fj} and a
real sequence {λj} → 0 such that

Φ(x) =
∞∑
j=1

λj〈x , vj〉fj .

Example

Φ = Σ = QΛQT (3)

Σx = λ1〈v1, x〉v1 + λ2〈v2, x〉v2 (4)
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Theoretical Background

Definition 4 (Symmetric)

Operator Φ ∈ L is symmetric if

〈Φ(x), y〉 = 〈x ,Φ(y)〉.

Definition 5 (Positive-Definite)

Operator Φ ∈ L is positive-definite if

〈Φ(x), x〉 ≥ 0.

Fact 6

A symmetric positive-definite Hilbert-Schmidt operator Φ admits the
decomposition

Φ(x) =
∞∑
j=1

λj〈x , vj〉vj

with orthonormal vj which are eigenfunctions of Φ (i.e. Φ(vj) = λjvj).
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Paper’s Theoretical Setup

Consider the model with a constant mean funciton

Xt(s) = µ(s) + Yt(s) 1 ≤ t ≤ n (5)

where t a time point and s a spatial coordinate on a set Z (e.g [0, 1]3).
Constant (in time) mean function is µ(s), Yt(s) are mean 0 random fluc-
tuations with a possibly time-dependent covariance structure.

Definition 7 (L2(Z))

L2(Z) is the space of random functions X on Z with
∫
Z E [X 2(s)]ds.
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Paper’s Theoretical Setup - Covariance Operator

Definition 8 (Covariance Operator)

Let {Xt(·) | 1 ≤ t ≤ n} ∈ L2(Z) be a functional time series, where Z a
compact set. The covariance operator Ct : L2(Z)→ L2(Z) is defined
by

Ct(z) =

∫
ct(·, s)z(s)ds

where
ct(u, s) = Cov(Xt(u),Xt(s))

is the covariance kernel of Xt(·).
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Changepoint Model

Paper looks at two changepoint models, the AMOC (at most one change),
and the epidemic (C1 → C2 → C1). I will focus on AMOC.

Yt(s) = Y
(1)
t (s)1{1≤t≤θn} + Y

(2)
t (s)1{θn<t≤n} 1 ≤ t ≤ n

(6)

c(u, s) = Cov
(
Y

(1)
t (u),Y

(1)
t (s)

)
(7)

c(u, s) + δ(u, s) = Cov
(
Y

(2)
t (u),Y

(2)
t (s)

)
(8)

for 1 ≤ t ≤ n and 0 < θ < 1 and c(u, s), δ(u, s) ∈ L2(Z × Z).

Under AMOC model we have

H0 : θ = 1 HA : 0 < θ < 1. (9)
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Paper Methdology - Dimension Reduction

General Idea: Project data to lower dimension→ run changepoint testing
on covariances of lower dimensional projection.

Project data into d dimensional space spanned by orthonormal basis

{vk(·) | k = 1, . . . , d}.

And then obtain projection scores via

〈Xt , vl〉 =

∫
Xt(s)vl(s)ds t = 1, . . . , n, l = 1, . . . , d . (10)

Under the data model

Cov(〈Xt , vl1〉, 〈Xt , vl2〉) =

∫ ∫
c(u, s)vl1 (u)vl2 (s)duds (11)

+ 1{θn<t≤n}

∫ ∫
δ(u, s)vl1 (u)vl2 (s)duds. (12)

Therefore need Equation 12 to be large to detect change.
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Paper Methdology - Functional PCA

Where {λl | l ≥ 1} a non-negative decreasing sequence of eigenvalues of
the covariance operator, and {vl(·) | l ≥ 1)} the eigenfunctions defined by∫

c(u, s)vl(s)ds = λlvl(u) l = 1, 2, . . . u ∈ Z. (13)

Mercer’s Lemma and Karhunen-Loeve expansion (Lemma 1.3, Theorem
1.5) [7]

c(u, s) =
∞∑
l=1

λkvl(u)vl(s) (14)

Yt(s) = Xt(s)− µ(s) (15)

=
∞∑
l=1

ηt,lvl(s) (16)

ηt,l =

∫
(Xt(s)− µ(s))vl(s)ds (17)

with the scores ηt,l are uncorrelated and centred with variance λj .
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Paper Methdology - Functional PCA in Practice

Since do not have covariance kernel, PCA based on empirical covariance
function

ĉn(u, s) =
1

n

n∑
t=1

(Xt(u)− X̄n(u))(Xt(s)− X̄n(s)) (18)

X̄n(s) =
1

n

n∑
t=1

Xt(s). (19)

Once obtain eigenfunctions {v̂l(·) | l = 1, . . . , d} and eigenvalues deter-
mine projection scores by

η̂t,l =

∫
(Xt(s)− X̄n(s))v̂l(s)ds (20)

= 〈Xt , v̂l〉 − 〈X , v̂l〉n (21)

〈X , v̂l〉n =
1

n

n∑
t=1

〈Xt , v̂l〉. (22)
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Paper Methdology - Obtaining Eigenfunctions

In very high dimensions PCA on covariance matrix infeasible due to
computation.

To get around this authors assume a separable covariance
structure

c((u1, u2, u3), (s1, s2, s3)) = c(u1, s1)c(u2, s2)c(u3, s3) (23)

which is same as if independent X ,Y ,Z have covariance kernels
cX (u1, s1), cY (u2, s2), cZ (u3, s3) then A = X (u1)Y (u2)Z (u3) has
covariance kernel cX (u1, s1)cY (u2, s2)cZ (u3, s3).

Significantly reduces dimension. If data 100x100x100, full covariance
matrix is 107 x 107 matrix. But using separable structure means
estimate 3 100x100 covariance matrices.
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Paper Methodology - Separable Covariance

Figure: Visualization of separable covariance structure estimation. For
covariance kernel in black direction, calculate empirical covariance of all black
rows and then take an average. Repeat process to obtain covariance kernel in
blue and red direction.
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Paper Methdology - Obtaining Eigenfunctions

Denote Ux ,Uy ,Uz each being a set of points in the x , y , z
dimensions.
For c1

c1(u1, s1) =
1

n

n∑
t=1

1

|Uy × Uz |
∑

y,z∈Uy×Uz

(
Xt(u1, y , z)− X̄n(u1, y , z)

) (
Xt(s1, y , z)− X̄n(s1, y , z)

)
.

(24)

Calculate c1, c2, c3 as above and for each covariance matrix obtain
eigenfunctions and eigenvalues {v̂1,j , λ̂1,j}p1

j=1, {v̂2,j , λ̂2,j}p2

j=1,

{v̂3,j , λ̂3,j}p3

j=1.

Order the λ̂i,j and for each i select top di (maybe 3
√
pi )

eigenfunctions for each dimension.

Take tensor product of eigenfunctions to obtain eigenbasis1

{v̂1,j1 ⊗ · · · ⊗ v̂k,jk , j1 = 1, . . . , dl , l = 1, . . . , k}. (25)

1Fairly certain this is the correct equation, believe there is small typo in paper.
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Paper Methdology - Obtaining Eigenfunctions

Figure: Visualization of tensor product where a1, b1, c1 are the eigenvectors
from dimension x , y , and z respectively and X is a 3D eigenfunction [4].

In paper only need to estimate 64x64, 64x64, 33x33 covariance
matrices

Suggest looking at up to top 3 eigenfunctions in each direction
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Paper Methodology - Test Statistic

Turn the functional testing problem into one testing for change in covari-
ance structure of d-dimensional estimated score vectors. Use CUSUM-
statistic as proposed in [6]

Sk =
1√
n

(
k∑

t=1

vech[η̂t η̂
T
t ]− k

n

n∑
t=1

vech[η̂t η̂
T
t ]

)
(26)

Ωn =
1

n

n∑
k=1

ST
k Σ̂−1

n Sk (27)

where Σ̂n an estimator of long run covariance (long run covariance is ≈
variance of the sample mean when time dependence exists). Finally the
changepoint location estimated as

θ̂ =
k̂∗

n
(28)

k̂∗ = arg max
1≤k≤n

ST
k Σ̂−1

n Sk . (29)
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Paper Methodology - Test Statistic

Theorem 1

Under some assumptions on data generating process, and if Σ̂ a
consistent estimator of long-run covariance of Σ then

Ωn
D→

d(d+1)/2∑
l=1

∫ 1

0

B2
l (x)dx (30)

where Bl(x) are independent standard Brownian bridges

Bl(x) = Wl(x)− xWl(1).

Figure: Realization of a random walk, and its corresponding Brownian Bridge.
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Paper Methodology - Test Statistic

Can then use Monte Carlo simulations to estimate 1 − α quantile of test
statistic by simulating many Brownian Bridges.

Problem: Very difficult to estimate long-run covariance Σ̂

Σ =
∑
t∈Z

Cov(vech[η0η
T
0 ], vech[ηtη

T
t ]). (31)

Why is this?

Dimension of projection subspace large, and time series short leads
to need to estimate large number of parameters relative to sample
size

Most long-run covariance estimation methods assume no
changepoints
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Paper Methodology - Long-Run Covariance

Assuming the η0 scores are Gaussian and have no time dependence

Σ = Cov(vech[η0η
T
0 ]) = diag(2λ2

1, λ1λ2, . . . , 2λ
2
2, λ2λ3, . . . , 2λ

2
d). (32)

Authors believe changepoint procedure more robust/conservative if only
consider diagonals of long-run covariance (i.e. long-run variance), therefore
test statistic changed to

Ω̃ =
1

n

n∑
k=1

ST
k D̂−1

n Sk (33)

where Dn constructed using estimated eigenvalues of covariance kernel.
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Paper Methodology - Resampling

Using the new test statistic Ω̃, the limiting distribution no longer pivotal
(i.e. cannot be easily written as Brownian Bridges), therefore a resampling
procedure is used.

1 Estimate changepoint in each coordinate of vech[η̂0η̂
T
0 ] using max

statistic.

2 Use this changepoint location to turn vech[η̂0η̂
T
0 ] into mean 0 vector.

3 Split time series into overlapping blocks of length K , and use this
blocks to estimate variances of score statistics (by taking an average
of the blocks’ variances).

4 Use these blocks to construct an aproximation of the test statistic

Ω̃∗n =
1

n

n∑
k=1

S∗Tk D∗−1
n S∗k . (34)

5 Repeat this process B times to get Ω̃
∗(1)
n , . . . , Ω̃

∗(B)
n , and take 1− α

quantile to get critical value.
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Application to fMRI Data

Setup

198 scans from 1000 Connectome Resting State Data [2] at same
location in Beijing. In previous paper, tested for mean change, here
they use 118 scans where no epidemic mean change was detected.

Each scan 64x64x33 recorded every 2 seconds for 225 time points.

Polynomial trend removed from each voxel (remove scanner drift).

Use a test statistic that puts more weight on the change in scores
related to eigenfunctions with largest eigenvalues.
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Application to fMRI Data - Low Dimensional Projection

Figure: 2nd to 400th largest variance of score products for one subject. Score
product of first component 10x larger than second one (removed for better
visibility).

Demonstrates most of variability in data driven by relatively few eigenfunc-
tions.
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Application to fMRI Data - Covariance Separability

Figure: Product of variances relative to variance of products. These valuse are
roughly equal, suggesting that the covariance could infact be treated as
separable.
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Application to fMRI Data - Changepoints Found

Figure: Score proucts with high evidence of changepoint. Red dotted line is
global estimated changepoint. Black line of is mean before and after single
dimension changepoint detected.
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Thoughts on the Paper

Strengths

Functional data analysis an intuitive way to approach fMRI data

Some valid theory for distribution of test statistic

Dimension reduction seems like a promising approach for fMRI data

Weaknesses

Much of methods developed in paper not actually used in
application section

Does not seem to constrain lower dimensional basis functions to be
smooth, might be subject to noise

Some of theory falls apart in finite sample high dimensional setting
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